Deep Learning-based Type Identification of Volumetric MRI Sequences

Jean Pablo Vieira de Mello*, Thiago M. Paixão, Rodrigo F. Berriel, Mauricio Reyes, Claudine Badue, Alberto F. De Souza, Thiago Oliveira-Santos

Introduction

- Magnetic Resonance Imaging (MRI):
 - Analysis of brain tumor progression:
 - Interest on automating the process.
- MRI sequences must be well identified:
 - However, unstandardized naming protocols.
- Proposed solution:
 - Convolutional Neural Network (CNN) to classify among MRI sequence types.

Related works

- Noguchi *et al.* (2018):
 - MRI classification based on the first or central slice of the volumes;
 - Small dataset.
- Ranjbar *et al.* (2019):
 - Single-slice classification;
 - No guarantee that slices from the same volume do not occur in train and test sets;
 - Missing/contradictory information;
- Also, both works use private datasets, hindering comparability.

Proposed solution

Figure 1: Overview of the proposed method (volume from TCGA-GBM* dataset)

Figure 2: Distinction between the main sequence types recognized by the classifier (volume from TCGA-GBM dataset in the overview and from BraTS* dataset in the foreground)

Experiments

• Datasets:

	BraTS (pre-processed data)	TCGA-GBM (non-pre-processed data)	BraTS + TCGA-GBM (mixed data)
All five classes	-	TCGA5	BRATS+TCGA5
No "OTHER" class	BRATS4	TCGA4	BRATS+TCGA4

Table 1: Datasets assembled for the experiments

Experiments

• Study on the input volume:

Figure 3: Study on the input volume: random *n*-depth subvolume from 1 to 16 slices (volume from TCGA-GBM dataset)

• Study on the use of pre-processed data:

Figure 4: Slices from a pre-processed volume (left; from BraTS dataset) and from a non-pre-processed volume (right; from TCGA-GBM dataset)

Results

• Study on the input volume:

Volume Depth (n)

Figure 5: Validation macro-accuracy across the considered volume depths (n). **The highest accuracy is obtained for** n = 4

Figure 6: Test macro-accuracies regarding the use of pre-processed data

• Study on the use of pre-processed data:

8

Conclusions

- High accuracy on classifying among MRI sequence types:
 - Even considering several acquisition protocols.
- Better generalization by mixing pre-processed and non-pre-processed data;
- Possible improvements:
 - Better distinguishing between T1 and T1c;
 - Recognition of more sequence types.

Thanks!

Jean Pablo Vieira de Mello*, Thiago M. Paixão, Rodrigo F. Berriel, Mauricio Reyes, Claudine Badue, Alberto F. De Souza, Thiago Oliveira-Santos

* jeanpvmello@gmail.com