Deep Learning-based Type Identification of Volumetric MRI Sequences

Jean Pablo Vieira de Mello*, Thiago M. Paixão, Rodrigo F. Berriel, Mauricio Reyes, Claudine Badue, Alberto F. De Souza, Thiago Oliveira-Santos

*S: jeanpvmello@gmail.com
Introduction

- Magnetic Resonance Imaging (MRI):
 - Analysis of brain tumor progression:
 - Interest on automating the process.
 - MRI sequences must be well identified:
 - However, unstandardized naming protocols.
- Proposed solution:
 - Convolutional Neural Network (CNN) to classify among MRI sequence types.
Related works

● Noguchi et al. (2018):
 ○ MRI classification based on the first or central slice of the volumes;
 ○ Small dataset.

● Ranjbar et al. (2019):
 ○ Single-slice classification;
 ○ No guarantee that slices from the same volume do not occur in train and test sets;
 ○ Missing/contradictory information;

● Also, both works use private datasets, hindering comparability.
Proposed solution

Figure 1: Overview of the proposed method (volume from TCGA-GBM* dataset)

*Publicly available under the Creative Commons Attribution 3.0 Unported License: https://creativecommons.org/licenses/by/3.0/
Proposed solution

Figure 2: Distinction between the main sequence types recognized by the classifier (volume from TCGA-GBM dataset in the overview and from BraTS* dataset in the foreground)

*Publicly available. No license information found.
Experiments

- Datasets:

<table>
<thead>
<tr>
<th></th>
<th>BraTS (pre-processed data)</th>
<th>TCGA-GBM (non-pre-processed data)</th>
<th>BraTS + TCGA-GBM (mixed data)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All five classes</td>
<td>-</td>
<td>TCGA5</td>
<td>BRATS+TCGA5</td>
</tr>
<tr>
<td>No “OTHER” class</td>
<td>BRATS4</td>
<td>TCGA4</td>
<td>BRATS+TCGA4</td>
</tr>
</tbody>
</table>

Table 1: Datasets assembled for the experiments
Experiments

- Study on the input volume:
 - $n = 1, 2, \ldots, 16$

Figure 3: Study on the input volume: random n-depth subvolume from 1 to 16 slices (volume from TCGA-GBM dataset)

- Study on the use of pre-processed data:

Figure 4: Slices from a pre-processed volume (left; from BraTS dataset) and from a non-pre-processed volume (right; from TCGA-GBM dataset)
Results

- Study on the input volume:
 - Figure 5: Validation macro-accuracy across the considered volume depths (n). The highest accuracy is obtained for $n = 4$

- Study on the use of pre-processed data:
 - Figure 6: Test macro-accuracies regarding the use of pre-processed data

No “OTHER” class

<table>
<thead>
<tr>
<th></th>
<th>PP</th>
<th>M</th>
<th>NPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train</td>
<td>PP</td>
<td>M</td>
<td>NPP</td>
</tr>
<tr>
<td>Test</td>
<td>PP</td>
<td>M</td>
<td>NPP</td>
</tr>
</tbody>
</table>

All five classes

<table>
<thead>
<tr>
<th></th>
<th>PP: pre-processed</th>
<th>NPP: non-pre-processed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train</td>
<td>M: mixed</td>
<td></td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

● High accuracy on classifying among MRI sequence types:
 ○ Even considering several acquisition protocols.

● Better generalization by mixing pre-processed and non-pre-processed data;

● Possible improvements:
 ○ Better distinguishing between T1 and T1c;
 ○ Recognition of more sequence types.
Thanks!

Jean Pablo Vieira de Mello*, Thiago M. Paixão, Rodrigo F. Berriel, Mauricio Reyes, Claudine Badue, Alberto F. De Souza, Thiago Oliveira-Santos

*SUPPORT AND ACKNOWLEDGMENTS

* jeanpvmello@gmail.com
ekrebsliga schweiz