A Framework for Local Outlier Detection from Spatio-Temporal Trajectory Datasets

Xumin Cai, Berkay Aydin, Anli Ji, Rafal Angryk

Presented by Xumin Cai

Motivation

- Improve data quality, enhance the performance of the predictive modeling
eg. NOAA Active Region associated with Solar Flare Prediction.
- Detect rarely occurring, but highly impactful
 extreme events.
eg. When a Coronal Mass Ejections (CME) strikes Earth's atmosphere which can cause a temporary disturbance of the Earth's magnetic field.

Image Credit: NASA/Walt Feimer

Outlying Trajectory Segments

Goal: Find outlying trajectory segments which are significantly different from the rest of the trajectory segments in the datasets based on the summary spatio-temporal feature of trajectory segments.

Local Outlier Detection Framework

Temporal	Feature	Clustering
Partition	Extraction	

Trajectory of NOAA Active Region

4,795 NOAA Active Region trajectories from 1996 to 2019.

Sampling interval:

NOAA record timestamp

- Every 24 hours
- Periodic Sampling Interval

Geometry:

Heliographic Longitude and Latitude.

Partition Strategy and Feature Selection

Parameter Setting

- $\Delta T=24$ hours, $n=1$
- Each ts contains two $<\mathrm{t}_{\mathrm{j}}, \mathrm{g}_{\mathrm{j}}>$ time-geometry pairs.
- $45,319<t_{j}, g_{j}>$ pairs, and generate 40,758 ts
- Cluster number K = 3

Descriptive Feature of Trajectory Segment

- Longitude displacement
- Latitude displacement
- Displacement Vector Magnitude
- Displacement Vector Direction

$$
\begin{gathered}
t s_{i} \cdot x_{e n d}-t s_{i} \cdot x_{\text {start }} \\
t s_{i} \cdot y_{\text {end }}-t s_{i} \cdot y_{\text {start }} \\
\left\|\overrightarrow{s_{i}}\right\| \\
\tan ^{-1}\left(\frac{t s_{i} \cdot y_{\text {end }}-t s_{i} \cdot y_{\text {start }}}{t s_{i} \cdot x_{\text {end }}-t s_{i} \cdot x_{\text {start }}}\right)
\end{gathered}
$$

Dissimilarity Comparison using Abnormal Score

$$
A B_{i}=\sum_{j=1}^{K} w_{j} * \operatorname{dist}\left(t s_{i}, c_{j}\right)
$$

Abnormal Score Distribution:

- \quad Set threshold equals to 0.1 .
- $\quad \sim 1 \% A B$ score of trajectory segments greater and equal than 0.1.

Outlying trajectory segments in NOAA

- Magnitudes of normal ts which are uniform and move from the east to the west-limb. (i.e., average longitudinal displacement of normal ts is +13.33 degree and barely change latitudes and direction)
- ots shows the anomalous behavior in both moving directions and magnitudes.

Any Questions?

Thank You!

