Distinctive 3D local deep descriptors

Fabio Poiesi and Davide Boscaini

Mobile Visual-SLAM (ARCore) reconstruction - indoors

Motivation

Compact descriptor

Efficient to compute

Generalise across sensor modalities

Learnable end-to-end

3D descriptors for PCD (overview)

LRF: Local Reference Frame

References

[1] R.B. Rusu et al., "Fast Point Feature Histograms (FPFH) for 3D registration," ICRA 2009
[2] B. Drost, et al., "Model globally, match locally: Efficient and robust 3d object recognition," CVPR 2010
[3] F. Tombari et al., "Unique Signatures of Histograms for Local Surface Description," ECCV 2010
[4] Yang et al., "TOLDI: An effective and robust approach for 3D local shape description," Patt. Rec. 2017
[5] Deng et al., "PPFNet: Global Context Aware Local Features for Robust 3D Point Matching," CVPR 2018
[6] Choy et al. "Fully Convolutional Geometric Features," ICCV 2019
[7] Gojcic et al., "The Perfect Match: 3D Point Cloud Matching with Smoothed Densities," CVPR 2019

How do we learn DIPs?

[Qi2017a] Qi et al., "PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space," NeurIPS 2017 [Yang2017] Yang et al., "TOLDI: An effective and robust approach for 3D local shape description," Pattern Recognition 2017 [Gojcic2019] Gojcic et al., "The Perfect Match: 3D Point Cloud Matching with Smoothed Densities," CVPR 2019 [Qi2017b] Qi et al., "PointNet: Deep learning on point sets for 3D classification and segmentation," CVPR 2017

TOLDI LRF [Yang2017,Gojcic2019]

$$ilde{\mathbf{\Sigma}}_{\mathcal{S}} = rac{1}{|\mathcal{S}|} \sum_{\mathbf{p}_i \in \mathcal{S}} (\mathbf{p}_i - \mathbf{p}) (\mathbf{p}_i - \mathbf{p})^{\mathrm{T}} \qquad \mathcal{S} = \{\mathbf{p}_i \, : \, ||\mathbf{p}_i - \mathbf{p}||_2 \, \le \, r_{LRF} \}$$

$$\hat{\mathbf{z}}_{\mathbf{p}} = \begin{cases} \hat{\mathbf{n}}_{\mathbf{p}}, & \text{if } \sum_{\mathbf{p}_i \in \mathcal{S}} \langle \hat{\mathbf{n}}_{\mathbf{p}}, \overrightarrow{\mathbf{p}_i \mathbf{p}} \rangle \ge 0\\ -\hat{\mathbf{n}}_{\mathbf{p}}, & \text{otherwise} \end{cases}$$

 $\hat{\mathbf{n}}_{\mathbf{p}} \text{ eigenvector corresponding to the} \\ \text{ smallest eigenvalue of } \tilde{\boldsymbol{\Sigma}}_{\mathcal{S}} \text{ (normalised)}$

 $\mathbf{\hat{y}_p} = \mathbf{\hat{x}_p} imes \mathbf{\hat{z}_p}$

$$\hat{\mathbf{x}}_{\mathbf{p}} = \frac{1}{||\sum_{\mathbf{p}_{i} \in \mathcal{S}} \alpha_{i} \beta_{i} \mathbf{v}_{i}||_{2}} \sum_{\mathbf{p}_{i} \in \mathcal{S}} \alpha_{i} \beta_{i} \mathbf{v}_{i}$$
$$\mathbf{v}_{i} = \overrightarrow{\mathbf{p}} \overrightarrow{\mathbf{p}}_{i} - \langle \overrightarrow{\mathbf{p}} \overrightarrow{\mathbf{p}}_{i}, \hat{\mathbf{z}}_{\mathbf{p}} \rangle \hat{\mathbf{z}}_{\mathbf{p}}$$
$$\alpha_{i} = (r_{LRF} - ||\mathbf{p} - \mathbf{p}_{i}||_{2})^{2}$$
$$\beta_{i} = \langle \overrightarrow{\mathbf{p}} \overrightarrow{\mathbf{p}}_{i}, \hat{\mathbf{z}}_{\mathbf{p}} \rangle^{2}$$

[Yang2017] Yang et al., "TOLDI: An effective and robust approach for 3D local shape description," Pattern Recognition 2017 [Gojcic2019] Gojcic et al., "The Perfect Match: 3D Point Cloud Matching with Smoothed Densities," CVPR 2019

PointNet [Qi2017]

- **input**: LRF-rotated patch points (*n* = number of points)
- **output**: descriptor (d = 32)
- trained via Siamese approach

[Qi2017b] Qi et al., "PointNet: Deep learning on point sets for 3D classification and segmentation," CVPR 2017

Hardest contrastive loss

Intuition: within a batch, make the descriptors of positive pairs close in the embedding space while making the other descriptors distant

Chamfer loss

$$\ell_c(\mathcal{X}) = \frac{1}{2n} \left(\sum_{\mathbf{x} \in \mathcal{X}} \min_{\mathbf{x}' \in \mathcal{X}'} \|\mathbf{A}\mathbf{x} - \mathbf{A}'\mathbf{x}'\|_2 + \sum_{\mathbf{x}' \in \mathcal{X}'} \min_{\mathbf{x} \in \mathcal{X}} \|\mathbf{A}\mathbf{x} - \mathbf{A}'\mathbf{x}'\|_2 \right)$$

 $\mathbf{A} \in \mathbb{R}^{3 \times 3}$ unconstrained

tried $\ell_{reg} = \|\mathbf{I} - \mathbf{A}\mathbf{A}^{\top}\|_{F}^{2} \rightarrow \mathbf{A} \rightarrow \mathbf{I} \rightarrow \text{no contribution}$

Experiments

- Training
 - 3DMatch dataset
 - about 16K point-cloud pairs
 - each pair is 256 descriptors
 - 40 epochs
- Testing
 - 3DMatch, ETH
- Evaluation
 - Feature Matching Recall [Deng2018]

ETH [Pomerleau2017] LIDAR

[Zeng2017] Zeng et al., "3DMatch: Learning the matching of local 3D geometry in range scans," CVPR 2017 [Pomerleau2017] Pomerleau et al., "Challenging data sets for point cloud registration algorithms," IJRR 2012 [Deng2018] Deng et al., "PPFNet: Global Context Aware Local Features for Robust 3D Point Matching," CVPR 2018

3DMatch dataset

FEATURE-MATCHING RECALL ON THE 3DMATCH DATASET [4].

Method	3DM E	latch std	3DMatchRotated Ξ std		Feat. dim.	Time [ms]
Spin [3]	.227	.114	.227	.121	153	.133
SHOT [17]	.238	.109	.234	.095	352	.279
FPFH [16]	.359	.134	.364	.136	33	.032
USC [36]	.400	.125	-	-	1980	3.712
CGF [37]	.582	.142	.585	.140	32	1.463
3DMatch [4]	.596	.088	.011	.012	512	3.210
Folding [5]	.613	.087	.023	.010	512	.352
PPFNet [6]	.623	.108	.003	.005	64	2.257
PPF-FoldNet [7]	.718	.105	.731	.104	512	.794
DirectReg [8]	.746	.094	-	-	512	.794
CapsuleNet [9]	.807	.062	.807	.062	512	1.208
PerfectMatch [10]	.947	.027	.949	.024	32	5.515
FCGF [11]	.952	.029	.953	.033	32	.009
D3Feat [12]	.958	.029	.955	.035	32	-
DIP	.948	.046	.946	.046	32	4.870

ETH Dataset

FEATURE-MATCHING RECALL ON THE ETH DATASET [22].

Method	Gazebo		Wood		Average
	Summer	Winter	Autumn	Summer	Average
FPFH [16]	.386	.142	.148	.208	.221
SHOT [17]	.739	.457	.609	.640	.611
3DMatch [4]	.228	.083	.139	.224	.169
CGF [37]	.375	.138	.104	.192	.202
PerfectMatch [10]	.913	.841	.678	.728	.790
FCGF [11]	.228	.100	.148	.168	.161
D3Feat [12]	.859	.630	.496	.480	.563
DIP	.908	.886	.965	.952	.928

Conclusions

- Compact descriptor
- Efficient to compute
- Generalise across sensor modalities
- -• Some interesting new research can be explored e.g. 6D pose estimation