
Distinctive 3D local deep descriptors

Fabio Poiesi and Davide Boscaini

Acknowledgement:





Motivation

Compact descriptor

Efficient to compute

Generalise across sensor modalities

Learnable end-to-end



Hand crafted Data driven

Two-stage

(with LRF)

One-stage

(without LRF)

FPFH [1]            PPF [2]

SHOT [3]          TOLDI [4]

PPFNet [5]          FCGF [6]

DIP

3DSmoothNet [7]

3D descriptors for PCD (overview)

LRF: Local Reference Frame
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PointNet [Qi2017]
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- input: LRF-rotated patch points (n = number of points)

- output: descriptor (d = 32)

- trained via Siamese approach
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Hardest contrastive loss
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Descriptors (illustration)

Intuition: within a batch, make the descriptors of positive pairs close in 
the embedding space while making the other descriptors distant



Chamfer loss

unconstrained

tried → → no contribution



Experiments

• Training
• 3DMatch dataset

• about 16K point-cloud pairs

• each pair is 256 descriptors

• 40 epochs

• Testing
• 3DMatch, ETH

• Evaluation
• Feature Matching Recall [Deng2018]
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3DMatch dataset



ETH Dataset



Conclusions

• Compact descriptor 

• Efficient to compute

• Generalise across sensor modalities

• Learnable end-to-end

• Some interesting new research can be explored

• e.g. 6D pose estimation


