

Weakly Supervised Learning through Rank-based Contextual Measures

João Gabriel Camacho Presotto¹, Lucas Pascotti Valem¹, Nikolas Gomes de Sá¹, Daniel Carlos Guimarães Pedronette¹, João Paulo Papa²

¹Department of Statistics, Applied Math. and Computing, UNESP - São Paulo State University ²School of Sciences, UNESP - São Paulo State University, Bauru - SP, Brazil

Introduction

- With the huge increase in multimedia collections and the lack labeled data in these scenarios;
- Creating methods capable of exploit the unlabeled data and work under weakly supervision in a crucial task;
- In this work, we propose a rank-based model capable of exploit contextual information encoded in the unlabeled data;
- This model can be used to perform weakly supervised classification.

Introduction

- The proposed model was evaluated considering several rank-based correlation measures, which can be used to identify strong similarity relationships between images, permitting to expand the labeled set in an unsupervised manner;
- The expanded labeled set in then used by a classifier to achieve better accuracy results.

Introduction

- This weakly supervised approach was evaluated with different combinations of rank correlation measures and classifiers;
- We used four public image datasets and different features;
- Positive gains were achieved in comparison with semi-supervised and supervised classifiers taken as baselines when trained with the same amount of labeled data.

- A ranking provides an inherent contextual representation of data,
 which establish a relationship between all elements in each rank;
- With that in mind, the main hypothesis of this work is:
 - Contextual information encoded in ranked lists can be analyzed through rank correlation measures to identify strong similarity relationships between images;
 - Strong similarity relationships can be used to expand small training sets.

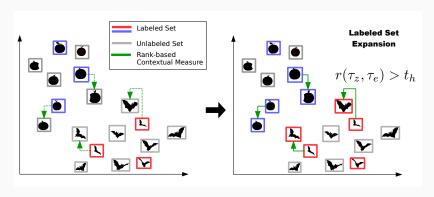


Figure 1: Weakly supervised learning based on contextual rank measures, represented by green lines and function $r(\tau_z, \tau_e)$.

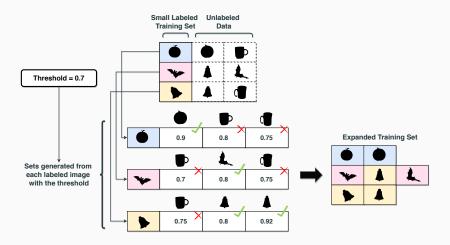
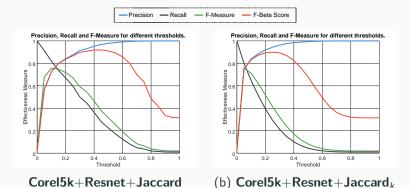


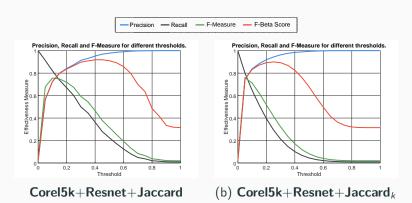
Figure 2: Weakly supervised learning based on contextual rank measures.

- Different contextual rank measures can be used to exploit contextual information, for example:,
 - Intersection Measure;
 - Jaccard;
 - Jaccard_k:
 - Kendall τ;
 - Rank-Biased Overlap (RBO);

- Experiments were conducted considering four public image datasets with size ranging from 1360 to 70000 images, and for each dataset we used different features:
 - MPEG-7 (1400 images): ASC Aspect Shape Context and CFD -Contour Features Descriptor;
 - Flowers (1360 images): ACC Auto Color Correlogram and CNN-Resnet:
 - Corel5k (5000 images): ACC Auto Color Correlogram and CNN-Resnet:
 - MNIST (70000 images): CNN-Resnet.

- The labeled set expansion works based on a specified threshold;
- If the correlation measure between a labeled image and an unlabeled image is greater of equal than the threshold, the unlabeled image is then incorporated to the expanded labeled set;
- It is imperative to find the adequate threshold, and to address that, an analysis of different effectiveness measures was conducted.





 For each one of these analysis, the threshold obtained at the maximum F-beta was considered as optimal and used in our classification experiments.

- Several supervised and semi-supervised classifiers were used in our experiments, in which they were evaluated considering a 10-Fold cross validation (10% training/90% test sets in each fold).
- Supervised Methods:
 - Optimum Path Forest (OPF);
 - Support Vector Machines (SVM);
 - k-Nearest Neighbors (kNN).
- Semi-supervised Methods:
 - Learning Discrete Structures for Graph Neural Networks (LDS-GNN);
 - Label Spreading;
 - Pseudo-Label with SGDClassifier.

Table 1: Accuracy for each dataset and measure before and after our weakly supervised approach using **OPF**.

		MPEG-7		Flowers		Corel5k		Mean	
		ASC	CFD	ACC	Resnet	ACC	Resnet	ivieaii	
OPF		82.95%	67.75%	30.54%	71.77%	40.21%	83.56%	62.80%	
Intersection	WS-OPF	85.56%	81.28%	30.69%	75.05%	41.69%	89.11%	67.23%	
	Gain	+2.6%	+13.52%	+0.16%	+3.28%	+1.48%	+5.55%	+4.43%	
Jaccard	WS-OPF	84.45%	77.56%	31.2%	76.95%	41.15%	88.44%	66.63%	
	Gain	+1.5%	+9.81%	+0.66%	+5.18%	+0.94%	+4.88%	+3.83%	
Jaccard _k	WS-OPF	86.74%	81.63%	31.97%	79.08%	41.92%	89.19%	68.42%	
	Gain	+3.79%	+13.88%	+1.43%	+7.3%	+1.71%	+5.64%	+5.63%	
Kendall $ au$	WS-OPF	85.67%	82.63%	32.12%	78.5%	41.77%	88.84%	68.26%	
	Gain	+2.71%	+14.88%	+1.58%	+6.72%	+1.56%	+5.29%	+5.46%	
RBO	WS-OPF	86.75%	82.2%	30.62%	81.09%	41.5%	89.42%	68.60%	
	Gain	+3.79%	+14.44%	+0.08%	+9.32%	+1.29%	+5.87%	+5.80%	
Spearman	WS-OPF	85.56%	81.28%	31.91%	78.21%	41.69%	89.11%	67.96%	
	Gain	+2.6%	+13.52%	+1.37%	+6.44%	+1.48%	+5.55%	+5.16%	

Table 2: Weakly supervised results in comparison with supervised and semi-supervised classifiers in isolation. Weakly supervised results consider the best rank measure with each classifier and **RBO for MNIST** dataset. Label Spreading and Pseudo-Label are reported as additional baselines.

		MPEG-7		Flowers		Corel5k		MNIST	Mean	
		ASC	CFD	ACC	Resnet	ACC	Resnet	Resnet	iviean	
	kNN	13.92%	12.39%	28.47%	63.67%	34.05%	76.8%	89.04%	45.48%	
Supervised	OPF	82.95%	67.75%	30.54%	71.77%	40.21%	83.56%	88.71%	66.50%	
	SVM	83.12%	68.56%	37.5%	80.65%	45.27%	88.33%	84.89%	69.70%%	
	Label Spreading	84.94%	71.90%	33.37%	72.65%	46.52%	82.32%	70.08%	65.97%	
Semi-Supervised	LDS-GNN	2.55%	5.14%	28.69%	55.69%	24.66%	60.01%	-	29.46%	
	Pseudo-Label+SGD	20.26%	19.39%	28.8%	80.89%	32.52%	87.35%	92.21%	51.63%	
	WS-KNN	74.64%	66.67%	32.98%	80.02%	40.04%	89.01%	89.81%	67.60%	
Proposed	WS-OPF	86.75%	82.63%	32.12%	81.09%	41.92%	89.42%	89.37%	71.9%	
Weakly Supervised	WS-SVM	87.15%	84.44%	37.75%	84.06%	45.6%	91.22%	86.96%	73.88%	
	WS-LDS	5.1%	17.81%	46.03%	85.86%	46.32%	88.8%	-	48.32%	

Conclusions

- We have presented a rank-based model applied to scenarios of weakly supervised learning;
- Our approach innovates by considering ranked lists contextual information to analyse manifold information and decide which data samples can be included in an expanded labeled set;
- Evaluated on four datasets, considering different features, various rank correlation measures, and classifiers;
- Very positive gains were achieved in most scenarios with gains up to +60.72%.

Conclusions

- As future work, we intend to explore automatic strategies for the threshold definition;
- We also intend to investigate the automatic choice of the rank correlation measure and the use of other deep learning methods (CNN-Resnet and others) as final classifiers.

Acknowledgements

The authors are grateful to the São Paulo Research Foundation - FAPESP (2019/04754-6, 2020/11366-0, 2019/11104-8, 2017/25908-6,2018/15597-6, 2014/12236-1), the Brazilian National Council for Scientific and Technological Development - CNPq (308194/2017-9, 307066/2017-7, and 427968/2018-6), and Microsoft Research.

