

Towards Tackling Multi-Label Imbalances in Remote Sensing Imagery

Dominik Koßmann¹ and Thorsten Wilhelm² and Gernot A. Fink¹ Pattern Recognition Group¹, Image Analysis Group², TU Dortmund University

Introduction - Imbalanced Data

[1] G. Sumbul, M. Charfuelan, B. Demir, and V. Markl, "BigEarthNet: A large-scale benchmark archive for remote sensing image understanding,", *IGARSS 2019 - IEEE International Geoscience and Remote Sensing Symposium*, pp. 5901–5904.

- Earth not covered equally in semantically meaningful classes
- BigEarthNet[1]: ~600000 images, 12 multispectral channels, matched Corine Land Cover inventory with Sentinel 2 imagery
- 43 classes (airports, urban areas, forest, agriculture, water sides ...)
- Forest ~ 40.000 samples vs. Airports ~ 60 samples (imbalance factor ~600)
- 120 x 120 [px] images, 10 60 [m] Res.

Pattern Recognition Group TU Dortmund University

Multilabel Data from Segmentation?

- Multilabel data from pixel labels results to huge differences inside inter class conditional probabilities
- Small regions can denote class instances without context
- Standard Oversampling (ROS) or class weighting schemes insufficient to deal with these imbalances

CLC Segmentation Map

https://land.copernicus.e u/pan-european/corineland-cover/clc-2012

Pattern Recognition Group TU Dortmund University

Sampling and Dynamic Weighting

- Class weighted sampling (CW)
- Minority Class focused sample weights (MROS)
- Dynamic Class Weights in Loss (DCW)

$$\mathcal{L}_{dbce}(e) = \frac{1}{C} \sum_{i=1}^{C} w_i(e) \times [y_i \log(a_i) + (1 - y_i) \log(1 - a_i)]$$

Experiments - SotA

- Upsampling of all spectral channelsDifferent ablations:
 - CW (Standard Class Weighting)
 - MROS + DCW
 - PT (Pretraining)

Method	Model	$F1_{macro}$	R_{macro}	P_{macro}
S-CNN-All [1]	S-CNN-All	70.98	77.10	69.93
K-Branch CNN [18]	K-Branch CNN	72.89	80.00	-
Base	DenseNet121	77.3	76.46	78.41
CW	DenseNet121	72.0	76.59	68.73
MROS + DCW	DenseNet121	77.66	76.16	79.97
MROS + DCW + PT	DenseNet121	78.21	77.18	80.41

[1] G. Sumbul, M. Charfuelan, B. Demir, and V. Markl, "BigEarthNet: A large-scale benchmark archive for remote sensing image understanding,", *IGARSS 2019 - IEEE International Geoscience and Remote Sensing Symposium*, pp. 5901–5904.
[18] G. Sumbul and B. Demir, "A novel multi-attention driven system for multi-label remote sensing image classification," in *IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium*, 2019, pp. 5726–5729

Experiments – Class F1 Score

Index	Class	Count	Base	CW	MROS + DCW	MROS + DCW + PT	Transf.
1	Agro-forestry areas	6199	92.58	84.05	90.96	90.99	1
2	Airports	173	50.14	47.11	58.39	61.48	-
3	Annual crops associated with permanent crops	1408	78.66	70.6	83.92	83.98	17
4	Bare rock	584	84.57	78.33	84.96	85.43	-
5	Beaches, Dunes and Sands	314	86.89	87.97	87.25	91.94	3
6	Broad-leaved forest	28144	86.36	77.34	82.06	81.0	4
7	Burnt areas	60	56.31	65.6	59.26	73.08	-
8	Coastal lagoons	287	95.99	91.14	96.59	93.27	12
9	Complex cultivation patterns	20785	81.24	72.36	76.6	75.3	6
10	Coniferous forest	32731	91.82	86.65	89.55	88.76	7
11	Construction sites	232	56.59	63.41	64.5	71.72	-
12	Continuous urban fabric	2127	89.28	84.94	83.12	83.65	19
13	Discontinuous urban fabric	13188	84.5	76.11	78.53	78.71	19
14	Dump sites	148	50.75	56.09	53.62	66.67	-
15	Estuaries	210	86.12	77.17	88.67	81.65	12
16	Fruit trees and berry plantations	937	64.77	53.56	66.86	67.76	17
17	Green urban areas	325	57.63	54.14	60.07	59.83	-
18	Industrial or commercial units	2388	70.71	62.37	70.3	71.35	8
19	Inland marshes	1097	61.35	50.16	58.97	61.21	10
20	Intertidal flats	184	80.43	76.38	80.21	81.65	-
			•••				
Average			77.3	72.0	77.66	78.21	

Pattern Recognition Group TU Dortmund University

Resnet50

Less Problem Complexity: Attributes

Patterns, Discontinuous urban fabric, Industrial or commercial units

	Base	MROS + DCW	Attr.	[3]
New Class (Attribute Encoding)	\checkmark	\checkmark	\checkmark	-
Agro-forestry areas (1)	77.54	77.01	78.09	70.49
Arable Land (26,30,32)	86.53	84.59	85.94	83.85
Beaches, Dunes and Sands (5)	56.55	54.48	58.75	61.46
Broad leaved forest (6)	78.09	75.50	77.59	74.05
Coastel wetlands (34,35)	61.88	57.52	62.61	47.71
Complex cultivation patterns (9)	71.75	67.11	70.40	66.03
Coniferous forest (10)	86.81	85.82	87.50	85.41
Industrial or commercial units (18)	51.98	49.08	53.67	48.55
Inland Waters (42,43)	85.93	82.77	85.11	83.69
Inland wetlands (19,29)	63.59	61.01	62.87	60.64
Land principally occupied (21)	69.14	65.53	64.51	60.94
Marine Waters (15,37)	98.06	97.70	98.14	97.53
Mixed Forest (23)	83.06	81.44	82.61	79.44
Moors (24,36)	66.54	62.39	66.35	59.41
Natural grassland and (25,38)	54.10	51.99	52.52	47.55
Pastures (28)	75.68	72.95	74.99	72.38
Permanent crops (3,16,27,41)	63.90	58.97	62.53	51.91
Transitional woodland-shrub (40)	71.79	68.31	71.28	53.47
Urban fabric (12,13)	78.40	74.88	77.07	74.84
$F1_{\rm macro}$	72.7	69.95	72.24	67.33

DenseNet121

 [3] G. Sumbul, J. Kang, T. Kreuziger, F. Marcelino, H. Costa, P. Benevides,
 M. Caetano, and B. Demir, "BigEarthNet Deep learning models with a new class-nomenclature for remote sensing image understanding," *January 2020 preprint*

Conclusion

- Better detection of semantically very meaningful minority classes in multi-label remote sensing imagery
- Increased Accuracy on minority classes (up to 20 %) with only minimal changes to majority classes
- Pre-Training on ImageNet beneficial for minority classes.
- Better analysis on highly imbalanced multi-label data through minority agnostic metric
- Superior classification performances for reduced set of parent classes by attribute encoding

orschungsgemeinschaft