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CHALLENGES INVOLVED il

Crowd Counting

Large variation in crowd density across images
Large perspective

Severe occlusion

Cluttered “crowd-like” background regions in images

SOTAs find it hard to recognize such background patterns.



CHALLENGES INVOLVED ulll

Crowd Counting

Recently, Sajid et al. [27], [28] observed that suitable rescaling (down-, no-, or up-scaling) of the input image or
patch, according to its crowd density level (low-, medium-, or high-crowd), gives more effective results as compared
to the multi-column or multi-regressor based methods. Based on this observation, they also desighed a patch
rescaling module (PRM) [28] that rescales the input image accordingly based on its crowd-density class label.

It has key shortcomings:
Requires the crowd-density classification label of the original input patch
Selects only one of three available rescaling operations (down-, no-, or up-scaling) for any given input patch

This limits the overall effectiveness of the PRM module and only utilize the deployed observation partially.
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OUR OBJECTIVES ulll

Crowd Counting

Better generalization ability: Design a multi-column crowd counting method with better
generalization ability towards huge crowd variations.

Effective input priors: Utilize the input patch rescaling based effective observation [27], [28] (as
discussed above) without performing any expensive and compromising crowd-density classification
process, and also use all three crowd-density levels (low-, medium, and high-crowd) in a more
effective manner than the PRM module [28].
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The Residual Module (RM) consists of either only 2- or 3-layers [10] based four residual units (RU).
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Concatenation-based crowd regression head (v4) concatenates the lower-resolutions with the highest-level
channels using the bilinear upsampling.
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The summation-based head (v5) adds the higher-level channels into the lowest-resolution feature maps.




QUALITATIVE ANALYSIS

Crowd Counting with Our Approach

Actual Count=597
Our estimate=595
PRM=431

Actual Count:1929
Our estimate:1920
PRM=1395

Density Map=623

Actual Count=3653
Our estimate=3639
PRM=2792

Density Map=2792

Actual Count=1070
Our estimate=1072
PRM=1011

Density Map=722




QUANTITATIVE ANALYSIS !%'.!L

Comparison with recent state-of-the-art methods

_ ShanghalTech Dataset UCF- QNRF Dataset _ AHU-Crowd Dataset

Method Method
CFF [30] 65.2 109.4 93.8 146.5 DM [8] 3954
RRSP [33] 63.1 96.2
BOW-SVM [7] 218.8
CAN [21] 62.3 100.0 107 183
TEDNet [17] 64.2 109.1 113 188 Ridge Regression [6] 2074
L2SM[38] 64.2 98.4 104.7 173.6 Hu et. al. [14] 137
BL [21] 62.8 101.8 88.7 154.8 DSRM [41] 81 129
ZoomCount [27] 66.6 94.5 128 201 ZoomCount [27] 88.2 126.1
PRM-Based [28] 67.8 86.2 94.5 141.9

PRM-Based [28] 74.9 111

v5 (ours) 67.1 81.0 96.9 130.1 v5 (ours) 60.2 91.7



MAJOR CONTRIBUTIONS illl

Crowd Counting

Designed a new multi-resolution feature-level fusion based end-to-end crowd counting approach for
still images that effectively deals with significant variations of crowd-density, lighting conditions, and
large perspective

Proposed an alternative patch rescaling module by more effectively using the input priors

Outperformed the state-of-the-art methods, including the PRM based schemes, by a large margin with
up to 10% improvements
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