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MOTIVATION

* Variational autoencoders
* help learn the variations in the different classes in the data.
* but are not viewpoint invariant.

e Capsule networks
* Learn a relationship between objects and its parts, thus learning a
transformation invariant model.

* Capsule networks in representation learning has not been examined
under the VAE settings



CAPSULES FOR REPRESENTATION LEARNING

o Capsules replace scalar neurons in networks with vectors

- Helps implicitly capture information such as orientation
o A capsule represents a feature, and the vector represents its likelihood
o Capsules helps build a hierarchical relationship - part-whole relationship
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Fig credit: Sabour, Sara, Nicholas Frosst, and Geoffrey E. Hinton. "Dynamic routing between capsules."
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CAPSULES FOR REPRESENTATION LEARNING

o Capsules replace scalar neurons in networks with vectors
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PROPOSED APPROACH

o Novel capsule based variational capsule encoder (B-Caps)

- Fully connected layers in the encoder are replaced with capsule layer

- Capsule layers, mean and variance, influence the latent space
sampling
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PROPOSED APPROACH

o Decoder network is from the basic VAE with fully connected layers.
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EXPERIMENTS - DATA
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o FASHION-MNIST dataset
- 60000 training images — 10 classes

- 60000 test images

Fig credit : https://en.wikipedia.org/wiki/MNIST database
https://peltarion.com/knowledge-center/documentation/datasets-view/datasets-used-in-
tutorials/fashion-mnist-dataset
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RESULTS

B-Caps

Basic VAE
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RESULTS

COMPARISON OF RECONSTRUCTION QUALITY ON MNIST WHILE
VARYING THE CAPSULE TYPES (C') AND DESCRIPTION LENGTH (D)). STD -
STANDARD DEVIATION.

Capsule Description SSIM MSE
Model types (C) | length (D) mean—+std T mean=+std 1
Baseline VAE — — 0.555 £+ 0.154 | 0.041 £ 0.019
B-Caps 8 64 0.541 &= 0.144 | 0.043 £+ 0.020
B-Caps 16 64 0.580 + 0.133 0.040 = 0.017
B-Caps 32 64 0.5734+0.147 | 0.041 £ 0.019
B-Caps 8 128 0.529 = 0.152 | 0.046 £+ 0.020
B-Caps 16 128 0.577 £ 0.129 | 0.040 £ 0.018




QUANTITATIVE RECONSTRUCTION MEASURE
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QUALITATIVE RECONSTRUCTION

o« Comparing the reconstruction quality of VAE vs B-Caps on Fashion-MNIST

Original VAE B-Caps

l ICI + CENTER FOR RESEARCH
IN COMPUTER VISION

13



CLASSIFICATION RESULTS

e Train SVM to classify reconstructed images
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CLASSIFICATION RESULTS
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SUMMARY

o Proposed novel variational capsule encoder which helps learn a
potentially stronger latent space.

o Even in a shallow network, B-Caps can learn a more representative latent
feature space compared to VAE.

o B-Caps has superiority in learning latent attributes in more complex datasets
(FASHION-MNIST) compared to baseline VAE.
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