

Drift anticipation with forgetting to improve evolving fuzzy system

Clément Leroy, Éric Anquetil, Nathalie Girard clement.leroy@irisa.fr

Univ Rennes, CNRS, IRISA - Intuidoc Team www-intuidoc.irisa.fr

Related works

Our proposal: Anticipate forgetting in conclusion part

Datastream learning context

Non stationary online learning

- Command/Gesture recognition system
- Recommendation system
- Fraud detection

Datastream characteristics			Learning model requirements						
-	Continuous data	- - -	Continuous adaptation Fast adaptation Prediction anytime						
-	Potentially infinite data	-	Fix the memory space -> one-shot learning						
-	Non-stationary stream	-	Adapt to different kind of concept drifts (incremental, brutal)						

Related works

Our proposal: Anticipate forgetting in conclusion part

IF Premise THEN Conclusion

TS Rule i: IF **x** is close to P_i **THEN** $y_i^1 = \prod_{i=1}^{1} \mathbf{x} \dots y_i^k = \prod_{i=1}^{k} \mathbf{x}$

(A) Principal EFS (PS)

 $\beta \in [0,1]$: membership function

$$y^m = \sum_{i=1}^r \beta_i(\mathbf{x}) y_i^m$$

 $class(\mathbf{x}) = y = argmax \ y^m(\mathbf{x})$

ParaFIS: A design based on the anticipation concept

A Principal EFS (PS)

(B) Anticipation module (AM)

[Leroy 2019]

ParaFIS: A design based on the anticipation concept

A Principal EFS (PS)

(B) Anticipation module (AM)

[Leroy 2019]

- + More reactive than starting from scratch
- + More stable than always forget

Related works

Our proposal: Anticipate forgetting in conclusion part

Further in the anticipation concept

What about anticipation in conclusion?

- + Integrate forgetting capacity in conclusion (improve reactivity)
- + Restoring consistency between premise part and conclusion part

Two main difficulties to deal with:

- Forgetting in the weighted recursive least square learning model (WRLS) not fully solve
 - Windup problem, collapse of conclusion, noise sensitivity
- Interconnection between premises and conclusions
 - weight: $\bar{\beta}_i(x) = \frac{\beta_i(x)}{\sum_i \beta_i(x)}$
 - → Complexity in $R^*(R+1)^*C \implies$ Real-time constraint not satisfied

B Anticipation module (AM)

Idea: Apply DDF [Bouillon 2012] only in the anticipation module

Forgetting factor = Correlation matrix Compute on a sliding window \rightarrow Forget in the direction of data activation

+ Preserve stability in the principal system - no windup problem

Reduce complexity

A Principal EFS (PS)

B Anticipation module (AM)

Reduce the number of parameters to learn

Two strategies to replace conclusion after a drift:

- The Naive Approach
- The Global Approach

Reduce complexity: Naive Approach

Naive Approach !

Reduce complexity: Global Approach

Global Approach !

Related works

Our proposal: Anticipate forgetting in conclusion part

Experimental validation

TABLE I: Final Results - Mean Accuracy Score

Model		Electricity	Hyperplane	Iris+	Car	10dplane	Weather	Sea	SinH	Line	Sin	Mean
		Pricing				_						
ParaFIS	No Forget	77±15	91±03	82 ± 14	8±11	68±34	78±03	94±04	67±09	85±15	85±13	81
	Forget PS	77±15	93±02	85 ± 12	79 ± 12	63 ± 16	78 ± 03	97 ± 01	71 ± 07	93 ± 06	94±06	83
	Forget AM	77±15	93±02	82 ± 14	$82{\pm}09$	70±31	79 ± 03	96±03	70±07	92 ± 10	93±09	83
	Naive											
	Forget AM	77±15	93±02	85 ± 15	81 ± 10	77±34	78 ± 03	98±01	70±07	94±06	94±08	85
	Global											

The level of significance of these results have been validated by a McNemar test 13

TABLE I: Final Results - Mean Accuracy Score

Model		Electricity	Hyperplane	Iris+	Car	10dplane	Weather	Sea	SinH	Line	Sin	Mean
		Pricing										
ParaFIS	No Forget	77±15	91±03	82 ± 14	8±11	68±34	78±03	94±04	67±09	85±15	85±13	81
	Forget PS	77±15	93 ± 02	85 ± 12	79±12	63 ± 16	78 ± 03	97±01	71±07	93±06	94±06	83
	Forget AM	77±15	93±02	82 ± 14	82 ± 09	70 ± 31	79 ± 03	96±03	70±07	92 ± 10	93±09	83
	Naive											
	Forget AM	77±15	93±02	$85{\pm}15$	81 ± 10	77±34	78 ± 03	$98{\pm}01$	70 ± 07	94±06	94±08	85
	Global											
Learn++	CDE	69±08	90±00	85 ± 14	68 ± 30	71±13	73±02	93±02	75 ± 50	89±14	80±13	79
Learn++	NSE	69 ± 08	91 ± 02	84 ± 17	67 ± 30	72 ± 14	75 ± 03	93 ± 02	73 ± 22	88±13	80±15	79
pENsemble	AxisParallel	75±16	92 ± 02	78 ± 15	79 ± 10	78 ± 20	80±02	97 ± 02	71±06	90 ± 07	78±26	82
pENsemble	Multivariate	75±16	92 ± 02	75 ± 17	79±10	$80{\pm}20$	78 ± 02	97 ± 02	71±06	90 ± 07	78 ± 30	82
pClass		68 ± 10	91±02	73 ± 18	77±10	63 ± 26	68 ± 04	89±10	71±09	91±07	72 ± 20	76