

Quan Nguyen,¹ Julius Richter,² Mikko Lauri,¹ Timo Gerkmann,² Simone Frintrop¹

Improving Mix-and-Separate Training in Audio-Visual Sound Source Separation with an Object Prior

ICPR 2020 Universität Hamburg ¹Computer Vision Group ²Signal Processing Group January 10–15, 2020

Task: Audio-Visual Sound Source Separation

Mix-and-separate training paradigm (e.g. in *PixelPlayer*^[1])

[1] H. Zhao et al. "The Sound of Pixels". In: The European Conference on Computer Vision (ECCV). Sept. 2018.

Audio-Visual Sound Source Separation with an Object Prior

PixelPlayer^[1]:

- Self-supervised method achievses good performance
- Does not automatically learn the 1-to-1 correspondence between the audio and visual channels

Our proposal:

- Weakly-supervised method called Object-Prior
- Late-fusion architecture trained first on object classification and then on sound source separation

^[1] H. Zhao et al. "The Sound of Pixels". In: The European Conference on Computer Vision (ECCV). Sept. 2018.

Each audio channel gets assigned to the sound of one object

Two-step training:

- 1. Video network is trained to recognize the instrument type with one-hot encoding labels
- 2. Audio network is trained while video network is frozen
- This approach is weakly-supervised rather than self-supervised since the first step requires human supervision

Metrics: SDR, SIR, SAR: the higher, the better^[2]

	SDR	SIR	SAR
PixelPlayer [1]	7.30	11.9	11.9
Object-Prior (Ours)	8.92	14.49	11.44

Table: Performance on the MUSIC test set^[1] (75 videos)

	SDR	SIR	SAR
PixelPlayer [1]	1.66	3.58	11.5
Object-Prior (Ours)	6.58	12.33	9.28

Table: Performance on the AudioSet-SingleSource test set^[3] (165 videos)

^[2] E. Vincent, R. Gribonval, and C. Févotte. "Performance measurement in blind audio source separation". In: IEEE transactions on audio, speech, and language processing 14.4 (2006), pp. 1462–1469.

^[1] H. Zhao et al. "The Sound of Pixels". In: The European Conference on Computer Vision (ECCV). Sept. 2018.

^[3] R. Gao, R. Feris, and K. Grauman. "Learning to Separate Object Sounds by Watching Unlabeled Video". In: ECCV. 2018.

Proposed a weakly-supervised model for audio-visual sound source separation

Experiments showed:

- Incorporating prior information about the object type improves the sound source quality measured in SDR and SIR
- The *Object-Prior* method achieves state-of-the-art performance