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Introduction

� Task: Audio-Visual Sound Source Separation
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Background

� Mix-and-separate training paradigm (e.g. in PixelPlayer[1])
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[1] H. Zhao et al. “The Sound of Pixels”. In: The European Conference on Computer Vision (ECCV). Sept. 2018.
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Motivation

PixelPlayer[1] :
� Self-supervised method achievses good performance
� Does not automatically learn the 1-to-1 correspondence between the

audio and visual channels

Our proposal:
� Weakly-supervised method called Object-Prior
� Late-fusion architecture trained first on object classification and then

on sound source separation

[1] H. Zhao et al. “The Sound of Pixels”. In: The European Conference on Computer Vision (ECCV). Sept. 2018.
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Object-Prior Method

� Each audio channel gets assigned to the sound of one object

Two-step training:
1. Video network is trained to recognize the instrument type with one-hot

encoding labels
2. Audio network is trained while video network is frozen

� This approach is weakly-supervised rather than self-supervised since the
first step requires human supervision
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Results

Metrics: SDR, SIR, SAR: the higher, the better[2]

SDR SIR SAR
PixelPlayer [1] 7.30 11.9 11.9

Object-Prior (Ours) 8.92 14.49 11.44

Table: Performance on the MUSIC test set[1] (75 videos)

SDR SIR SAR
PixelPlayer [1] 1.66 3.58 11.5

Object-Prior (Ours) 6.58 12.33 9.28

Table: Performance on the AudioSet-SingleSource test set[3] (165 videos)

[2] E. Vincent, R. Gribonval, and C. Févotte. “Performance measurement in blind audio source separation”. In: IEEE transactions on
audio, speech, and language processing 14.4 (2006), pp. 1462–1469.

[1] H. Zhao et al. “The Sound of Pixels”. In: The European Conference on Computer Vision (ECCV). Sept. 2018.
[3] R. Gao, R. Feris, and K. Grauman. “Learning to Separate Object Sounds by Watching Unlabeled Video”. In: ECCV. 2018.
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Conclusion

� Proposed a weakly-supervised model for audio-visual sound source
separation

Experiments showed:
� Incorporating prior information about the object type improves the

sound source quality measured in SDR and SIR
� The Object-Prior method achieves state-of-the-art performance
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