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Introduction

m Task: Audio-Visual Sound Source Separation
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Background

m Mix-and-separate training paradigm (e.g. in PierP/ayer{l])
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Motivation

PixelPlayer!!l:
m Self-supervised method achievses good performance

® Does not automatically learn the 1-to-1 correspondence between the
audio and visual channels

Our proposal:
m Weakly-supervised method called Object-Prior

m | ate-fusion architecture trained first on object classification and then
on sound source separation

[1] H. Zhao et al. “The Sound of Pixels”. In: The European Conference on Computer Vision (ECCV). Sept. 2018.
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Object-Prior Method

m Each audio channel gets assigned to the sound of one object

Two-step training;:

1. Video network is trained to recognize the instrument type with one-hot
encoding labels

2. Audio network is trained while video network is frozen

m This approach is weakly-supervised rather than self-supervised since the
first step requires human supervision
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Results

Metrics: SDR, SIR, SAR: the higher, the better[?

SDR | SIR | SAR
PixelPlayer [1] 730 | 119 | 11.9
Object-Prior (Ours) | 8.92 | 14.49 | 11.44

Table: Performance on the MUSIC test set!l (75 videos)

SDR SIR SAR
PixelPlayer [1] 1.66 | 3.58 | 11.5
Object-Prior (Ours) | 6.58 | 12.33 | 9.28

Table: Performance on the AudioSet-SingleSource test set®! (165 videos)
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Conclusion

m Proposed a weakly-supervised model for audio-visual sound source
separation

Experiments showed:

® |ncorporating prior information about the object type improves the
sound source quality measured in SDR and SIR

m The Object-Prior method achieves state-of-the-art performance
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