Hcore-Init: Neural Network Initialization based on Graph Degeneracy

Stratis Limnios¹⁴ George Dasoulas^{1 3} Dimitrios Thilikos² Michalis Vazirgiannis ¹

¹Data Science and Mining (DaSciM) team, Laboratoire d'Informatique (LIX) École Polytechnique, Palaiseau, France.

²AlGCo project team, CNRS, LIRMM, Université de Montpellier, Montpellier, France.

³Noah's Ark Lab, Huawei Technologies, Paris, France.

⁴Alan Turing Institute, London, UK

- We provide a general framework to transform neural networks to collections of bipartite graphs,
- We define a degeneracy framework on hypergraphs, the *k*-hypercore, and apply it to their incidence graphs, i.e. bipartite graphs,
- Finally we use this decomposition to provide a new initialization method for CNN and MLPs.

Neural Networks and Graphs

Figure 1: Graph representations of neural network models

What happens in details

Transforming neural networks to graphs seems fairly straigth forward. Unfortunatly it is not necessarily the case :

Output: $3 \times 3 \times 4$

Figure 2: CNN to graph, with only one convolution layer

Why Hypergraphs?

Every hypergraph can be represented as its incidence graph, which is a bipartite graph. As k-core is not effective on bipartite graphs, especially very dense ones, we needed to design an alternative on bipartite graphs. So we did it on hypergraphs.

Figure 3: Hypercore decomposition example

Definition (Hypercore) Given a hypergraph $\mathcal{H} = (V, E_{\mathcal{H}})$ We define the (k, l)-hypercore as a maximal connected subgraph of \mathcal{H} in which all vertices have hyperdegree at least k and all hyperedges have at least l incident nodes.

Figure 4: Hypergraph and Bipartite graph representation, We now will refer to the (k, 2)-hypercore as the k-hcore

Initialization Method

Neural Network Initialization

Initialization methods

- Standard initialization methods on neural networks focus on the definition of the standard deviation of the normal distribution.
 - Xavier Glorot init
 - Kaiming He init
- What if we could encourage "important" nodes/weights according to graph information?

Figure 5: Neural Network architecture (Source:VIASAT).

METHOD: The graph-based initialization method consists of:

- 1. Pretraining of NN for *x* epochs.
- 2. Construction of weighted graph structure of NN architecture.
- 3. Hypercore decomposition of the contstructed graph.
- 4. Weight initialization of the NN based on the output hypercore values.

The given pair of layers weights $w_{i,j}$, are initialized, depending on their sign, with a normal law with expectancy:

• for all *i* if
$$w_{i,j} \ge 0$$
, $M = \frac{c_j^+}{\sum_{1 \le k \le n_2} c_k^+}$

• else
$$M = \frac{c_j^-}{\sum_{1 \le k \le n_2} c_k^-}$$

Hence $w_{i,j}$ follow a $\mathcal{N}(M, \frac{2}{n_2^2})$ which variance is from the Kaiming initilization method.

Experiments

Results on CIFAR-10 (1/3) Using CNN

Figure 6: Test accuracy (left) and train loss (right) on CIFAR-10 for the combined application of the initialization on the linear and the convolutional layers. For the curves Hcore-init-*x*, *x* stands for the number of pretraining epochs.

Table 1: Top Accuracy results over initializing the full model, only the CNN and only the FCNN for CIFAR-10, CIFAR-100, and MNIST. **Hcore-Init*** represent the top performance over all the pretraining epochs configurations up to 25

	CIFAR-10	CIFAR-100	MNIST
Kaiming	64.62	32.56	98,71
Hcore-Init*	65.22	33.48	98.91
Hcore-Init-1	64.91	32.87	98.59
Hcore-Init-5	64.41	32.96	98.70
Hcore-Init-10	65.22	33.41	98.81
Hcore-Init-15	64.94	33.45	98.64
Hcore-Init-20	65.05	33.39	98.87
Hcore-Init-25	64.72	33.48	98.91

Conclusion and future research topics that we are interested in:

- We propose a new NN initialization method based on hypergraph degeneracy that outperforms existing state-of-the art initialization method,
- Hopefully this opens doors as to investigate the graph structure of neural networks and encourages our effort towards this domain.
- As our model is designed as "plug-n-play" we hope to see results in more complex architectures using convolutional layer blocks and MLPs in a more intricate way.
- We also want to investigate the shadow graph of the weighted graph we build which is the one induced by the gradient descent.

THANK YOU