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Introduction

Human activity recognition (HAR)

Identification and categorization of recorded data into
well-defined basic activity.

Activity Detection

Temporally localizing the movements of the person in the
scene.

Activity Classification

Distinguishing the nature of a person movements using
some spatial and temporal cues or any other meaningful
features and assigning it to its corresponding class.
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Introduction

Vision-based HAR has become a very active research
topic in computer vision and image processing due to its
wide application fields.

automatic video surveillance,
public security,
virtual and augmented reality,
health care and home monitoring,
human-computer interaction and robot learning ...
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Vision-based Human Activity Recognition

Uni-modal Multi-modal

HAR

from RGB 
data

from Depth 
data

from 
Skeleton data

Figure 2.1: Human Activity Recognition according to the nature
of the data
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Multi-modal Human Activity Recognition I

1 Why data fusion?
Limitations while discriminating complex activities due to
environment conditions (Rahmani and Mian, 2016).
To increase the robustness and the reliability of the
recognition system while reducing single sensor effects
(Nweke et al., 2019).
It is essential to provide a complementary highly
discriminative fusion of the modalities.
Many fusion strategies: Feature-level fusion, through
increasing feature-space, projecting on some external
frame, or using correlation-like analysis (Nweke et al.,
2019).

◦ Canonical Correlation Analysis: learn from heterogeneous
data and afford high linear correlation outputs.
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Multi-modal Human Activity Recognition II

2 Why RGB, depth and skeleton data?
Depth data, skeleton information and RGB images provide
important complementary features;
Depth data is more robust to illumination changes and
scale variation but sensitive to occlusion;
Depth cameras can overcome some inherent privacy and
limitations issues related to traditional cameras;
Skeleton information is more robust to occlusion effects;
3D locations and angles of joints are common features that
can be used to build robust skeleton representations;
RGB image provides fine-grained image segmentation;
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Multi-modal Human Activity Recognition III

3 Why video representation?
Efficient action representation is the key to yield robust and
expressive features;
Video as a spatial-temporal volume by stacking frames
over a given sequence and action recognition is performed
based on either spatial or temporal features or both;
Rank pooling in videos (Fernando et al., 2015, 2016)
allows us to capture the video-wide temporal evolution
while preserving actions execution temporal ordering.
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Dynamic RGB and Depth Images

Definition (Dynamic Image)

Dynamic image (DI) consists of a single image
representation of a video sequence, capturing the
temporal evolution of ongoing action (Fernando et al.,
2015; Bilen et al., 2017).

DIs focus on the motion instead of background pixels
which are averaged away,
DIs behave differently for actions of different speeds,
DIs are reminiscent of some other imaging effects such
as blur and panning.

- - - > Approximated Rank Pooling Method
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Dynamic RGB and Depth Images

RGB Sequence Depth Sequence

DI RGB Image DI Depth Image

Figure 3.1: Dynamic RGB and Dynamic Depth images from
RGB and Depth images
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Skeleton Images

For each video sequence:

1 We normalize the
coordinates of the
skeleton joints (x,y,z),

2 Create RGB image
using X as first channel,
Y as second channel
and Z as third channel.

(a) (b)

Figure 3.2: Some generated
skeleton images from skeleton
joints.



Introduction

Vision-based
HAR

Proposed
Methodology
Dynamic RGB and Depth
Images

Skeleton Images

Feature Extraction with
Pre-trained Models

Feature Fusion with CCA

Results and
Discussion

Conclusion

References

Feature Extraction with Pre-trained Models

DI RGB Image DI Depth Image Skeleton Image

Resnet 50 activations 
from RGB DI 

Resnet 50 activations 
from Depth DI 

AlexNet activations 
from Skeleton Images

Features Extraction

Figure 3.3: Feature extraction from DI RGB, DI Depth and
Skeleton images using Resnet50 and Alexnet
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Feature Fusion with Canonical Correlation
Analysis

Resnet 50 activations 
from RGB DI 

Resnet 50 activations 
from Depth DI 

AlexNet activations 
from Skeleton Images

Fused Feature Vector

Feature Fusion: CCA

LSTM Model (bi-LSTM: 600 hidden units, Batch size = 32, Input size = 1000)

Action classes

Figure 3.4: Canonical Correlation Analysis for feature fusion
and classification with LSTM
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Experimental Results

1 We calculate the performance accuracy of each single
modality.

2 We compare activity classification from straightforward
images towards newly created images (dynamic RGB,
depth images and skeleton images).

3 We calculate the recognition accuracy for each pairwise
fusion and for the three features fusion.

4 We also investigate the order of fusing features.
5 Finally, we compare the results of our method to the

state-of-the-art on the publicly available UTD-MHAD and
NTU-RGB datasets.
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Datasets

UTD-MHAD
Multi-modal dataset (Chen
et al., 2015),
Four data modalities: RGB,
depth, skeleton and inertial
signals,
861 video sequences,
Microsoft Kinect sensor and
wearable inertial sensor,
27 actions by 8 subjects (4
times).

◦ Training: subjects 1, 3, 5, 7
◦ Testing: subjects 2, 4, 6, 8

NTU RGB+D
Large-scale multi-modal
dataset (Shahroudy
et al., 2016),
56880 videos,
60 action classes of 40
subjects (twice),
Three Microsoft Kinect
v2 sensors.

◦ Training: cameras 2
and 3

◦ Testing: camera 1
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Results of classification with uni-modal
features

Table 1: Accuracy (%) of activity classification with LSTM of uni-modal
features and features extracted (using pre-trained models) from our
newly created image representations on the UTD-MHAD and NTU
RGB+D datasets.

Uni-modal feature UTD-MHAD NTU RGB+D
RGB 51.35 39.85
Depth 37.45 45.90
Skeletal data 74.52 49.91
Dynamic RGB 72.28 41.53
Dynamic Depth 71.91 51.66
Skeleton images 87.43 50.81
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Results of classification with multi-modal
features

Table 2: Accuracy (%) of activity classification using fusion of
multi-modal features extracted (using pre-trained models) from our
newly created image representations on the UTD-MHAD dataset and
NTU RGB+D dataset respectively (DI refers to dynamic images).

Pairwise Fusion UTD-MHAD NTU RGB+D

DI RGB + DI Depth 85.39 60.42
DI RGB + Skeleton images 93.26 68.62
DI Depth + Skeleton images 97.95 70.85
By three Fusion UTD-MHAD NTU RGB+D
(DI RGB + DI Depth) + Skeleton images 98.88 75.50
(DI RGB + Skeleton images) + DI Depth 92.13 73.72
(DI Depth + Skeleton images) + DI RGB 93.26 72.64
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Comparison with state-of-the-art methods

Table 3: Comparison of the proposed method with previous methods
on UTD-MHAD Dataset.

Method Accuracy %
Decision Fusion Using LOGP (Bulbul et al., 2015) 88.40
Depth + inertial data fusion + CRC (Chen et al., 2015) 79.10
5-CNN fusion of skeleton images (Khaire et al., 2018) 95.38
fusion with CCA and KELM (Imran and Raman, 2020) 97.91
DI RGB + DI Depth + Skeleton images + LSTM (Ours) 98.88
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Comparison with state-of-the-art methods

Table 4: Comparison of the proposed method with previous methods
on NTU RGB+D Dataset.

Method Accuracy %
Deep RNN (Shahroudy et al., 2016) 64.09%
Deep LSTM (Shahroudy et al., 2016) 67.29%
Joint trajectory maps + CNN (Wang et al., 2016) 75.20%
Part-aware LSTM (Shahroudy et al., 2016) 70.20%
DI RGB + DI Depth + Skeleton images + LSTM (Ours) 75.50%
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Conclusion

A vision-based multi-modality fusion approach for
human activity recognition.
RGB dynamic images, depth dynamic images and
skeleton images are constructed.
Automatic features are extracted from the newly
constructed visual images using pre-trained models.
CCA (feature fusion strategy) was employed to select
highly discriminative features.
The resulting feature fusion vectors are then fed to a
bi-directional LSTM network to recognize and classify
activities.
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Conclusion

Our results can achieve high recognition accuracy and
outperform the state-of-the-art results for both datasets.
Will explore other fusion schemes, integrate some data
augmentation methods and use more fine-gained
optimization of the LSTM parameters.



Thank You.
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