Conditional-UNet: A Condition-aware Deep Model for Coherent Human Activity Recognition From Wearables

Liming Zhang, George Mason University Wenbin Zhang, University of Maryland, Baltimore County Nathalie Japkowicz, American University 12/10/2020

Motivations

(1) Sensor-embedded wearables are more and more popular .etc.

https://www.eenewsanalog.com/news/sensor-actuator-markets-see-uptick-wearables-embedded-control-and-iot/page/0/1

(2) Head gesture recognition with wearables are a trending research.

https://www.veative.com/blog/gyroscope-importantvirtual-reality/

(3) Real world conditions can be complicated when users are moving.
None of current works tried to solve this.

Wu, Cheng-Wei, et al. "Applying machine learning to head gesture recognition using wearables." 2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST). IEEE, 2017.

Hardwares

Data stored in back-end server

Challenges

A new problem: *Coherent* Human Activity Recognition(Co-HAR) with *single-location* sensors

Specifically, there are modeling challenges as follows:

- 1. The single location of sensors has mutual impact on signals.
- 2. The imbalanced domination of different activities could fade away the signals of the other activities.
- 3. The multi-label window problem for activities of various duration

A novel condition-aware deep model called "Conditional-UNet"

Raw data likelihood formula

 $p(Y_1, \dots, Y_H | X) =$ $p_{\theta_1}(Y_1 | X) p_{\theta_2}(Y_2 | Y_1, X) \dots p_{\theta_H}(Y_H | P_{H-1}, \dots, Y_1, X)$ (1) Yi: different labels X: sensors data

Our approach: Conditional data likelihood factorization as a more general framework

$$\mathcal{L} = log(p(Y_1, \dots, Y_H | X)) = \sum_{t}^{T} \left(log(p_{\theta_1}(Y_{1,t} | X)) + \dots + log(p_{\theta_H}(Y_{H,t} | P_{H-1,t}, \dots, Y_{1,t}, X)) \right)$$
(2)

Existing approaches: multi-label classification assuming conditional independences

$$p(Y_1, \dots, Y_H | X) = p_{\theta_1}(Y_1 | X) p_{\theta_2}(Y_2 | X) \dots p_{\theta_H}(Y_H | X)$$

A novel condition-aware deep model called "Conditional-UNet"

Unet used a 32 hidden neuron for Deep architectures the first upsampling and last downsampling layers, and is very Decoding module: $f_{\theta_1}(X)$ efficient for computing. \hat{y}_1 UNet Encoding module: $g_1(\hat{y}_1)$ $Merge(X,\cdot)$ \widehat{Y}_1 $\Theta = minimize(\mathcal{L})$ Embedding 4 Optimizing module X $Embed(\hat{Y}_1)$ **Generate** (\hat{y}_1) Decoding module: $f_{\theta_2}(Y_1, X)$ Encoding module: $g_2(\cdot)$ 4.77 \hat{Y}_2

A novel condition-aware deep model called "Conditional-UNet"

Compared Naïve-Max and Gumbel-Max trick for **Generate** (\hat{y}_1) \mathcal{M} sampling operation

(b) Stable Gumbel-Max trick

True Head Label

right-roll left-roll right-lean

left-lean

right left

up down

nul walk

sit

5 10 15

(a) SVM

Predict Head Labe

10 15

(b) UNet

0 5

10 15

0 5 10

(c) DWcoDH (d) DHcoDW

0 5

True Walk/Sit

Predict Walk/Sit

Acc X

Acc X

Baseline models: SVM, UNet

Two alternative models of Conditional-Unet:

- 1) DWcoDH, Walking conditioned on Head
- 2) DHcoDW, Head conditioned on Walking

Conditional-UNet outperforms existing state-of-the-art UNet model, and achieves up to **92.06%** of accuracy and **87.83%** of F1 score. Also, DHcoDW's performance is good for all gesture types, not for some gestures like other baselines.

Contributions, Limitations and Future works

Contributions:

Addressed a challenging problem Co-HAR for which a new dataset was collected.

Proposed a novel condition-aware deep model called "Conditional-UNet".

Limitations:

- It is still not real-life scenario.
- Need to include more deep learning methods to compare.
- We run deep models on desktop GPU, but computation power is constrained in real-world wearables.

Future works

- Is such trained model transferred for real-world scenario? Or need re-training?
- In the data likelihood loss, hierarchical labels can be considered or imbalanced class problem can be studied in the future.

Code and data: https://github.com/tongjiyiming/Conditional-UNet