Object Detection on Monocular Images with Two-Dimensional Canonical Correlation Analysis

Zifan Yu, Suya You

Task and Our Contributions

Object detection on monocular images with two-dimensional Canonical Analysis (2DCCA) to fuse the correlated features of the RGB images with the correlated features of the estimated depth data_o

• Extending one-dimensional CCA based deep learning methods to two-dimensional CCA by an approximate method (2D-CCA layer).

Previous CCA based Deep learning Methods

Applying 1DCCA on feature vectors by flattening feature maps for the image classification task.

• Utilizing correlation as a regularization term of objective function without directly using transformed features by CCA.

• Facing the singularity problem of covariance matrice in case of high-dimensional features with small batch size.

Our pipeline

Our pipeline

$$X_t = l_x^T X r_x , \ Y_t = l_y^T Y r_y$$

 $max corr(X_t, Y_t) = max corr(l_x^T X r_x, l_y^T Y r_y)$

2D-CCA layer has two pairs of trainable parameters. The parameters are initialized by calculating 2DCCA transformations. Every x epochs to update the parameters by calculating 2DCCA.

Results

Results of Kitti:

	mAP		mRecall		mIoU	
	iou=0.7	iou=0.5	iou=0.7	iou=0.5	iou=0.7	iou=0.5
Faster-RCNN RGBD	48.60	57.13	50.96	59.55	72.13	72.33
Faster-RCNN 2DCCA	41.72	57.94	44.74	61.47	67.88	70.04

Results of different fusing operation :

5	m	AP	mR	ecall	ml	oU
	iou=0.7	iou=0.5	iou=0.7	iou=0.5	iou=0.7	iou=0.5
+	37.33	54.23	39.81	57.95	64.59	67.50
Ð	41.72	57.94	44.74	61.47	67.88	70.04

Results of Virtual Kitti:

	Validation			Test		
	mAP	mRecall	mIoU	mAP	mRecall	mloU
Faster-RCNN RGBD	98.01	96.69	91.31	98.29	97.18	91.80
Faster-RCNN 2DCCA	97.29	94.11	88.31	98.02	95.60	88.87

Results of different 2D-CCA calculation frequency:

	mAP	mRecall	mloU	
CCA Initial	46.64	48.05	62.42	
X = 10	57.94	61.47	70.04	
X = 20	42.21	44.67	59.07	

Thank you !

If any questions, please email zifanyu@usc.edu.

