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Multi-frequency, heterogeneous morphology

(b) 125 kHz (c) 200 kHz ) 455 kHz
(e) 67 kHz (f) 67 kHz (g) 67 kHz (h) 67 kHz

Sample 1-hour echograms measured with a fixed-position echosounder (see Sec. III-A). First row: (a) 67 kHz echogram with range (y-) and time (x-) axes, and acoustic echo intensity;
(b)-(d) the same echogram at other frequencies. Second row: four echograms (only 67 kHz is shown) containing various schools identified by red bounding boxes.
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Machine learning-based approaches

Approach | Localization | Classification

1) Hand-crafted | Custom ROI extractor | ML image classifier
2) Hybrid Custom ROI extractor | DL image classifier
3) End-to-end DL object detector DL object detector

ROI = region of interest, ML = machine learning, DL = deep learning
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Most common in the related
literature (see Sec. I-B from the
manuscript)

Novel Region of Interest (ROI)
extractor
- Herring-specific assumptions

Support Vector Machine (SVM)
- Four hand-crafted features
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Machine learning-based approaches

Approach | Localization | Classification
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ROI = region of interest, ML = machine learning, DL = deep learning
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Machine learning-based approaches
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* Most common in the related * Novel Region of Interest (ROI)
literature (see Sec. I-B from the extractor
manuscript) - Herring-specific assumptions
* Novel Region of Interest (ROI) * Custom deep learning-based
extractor image classifiers (ResNet [22],
- Herring-specific assumptions DenseNet[23], Inception [24])
* Support Vector Machine (SVM)
- Four hand-crafted features
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Machine learning-based approaches

Most common in the related
literature (see Sec. I-B from the
manuscript)

Novel Region of Interest (ROI)
extractor
- Herring-specific assumptions

Novel Region of Interest (ROI)
extractor
- Herring-specific assumptions

Custom deep learning-based
image classifiers (ResNet [22],
DenseNet[23], Inception [24])

Custom-trained end-to-end
object detectors

(Faster R-CNN [25],
YOLOV2 [20])

Novel tiling approach

* Support Vector Machine (SVM)

- Four hand-crafted features

\. / \. / \. /

Approach | Localization | Classification

1) Hand-crafted | Custom ROI extractor | ML image classifier
2) Hybrid Custom ROI extractor | DL image classifier
3) End-to-end DL object detector DL object detector

ROI = region of interest. ML = machine learning, DL = deep learning
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: Hybrid Approach :
wim> | (ResNet, Inception, e
ROI1 : L Densenet) 7 :
Extraction : OR i
Hand-Crafted ( Hand-Crafted | |
| ) * Features ’ Approach *
4-frequency echogram (Sv) : Extraction L (SVM) )
Localization Classification
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Final results Concatenated tiles

(b)
General block diagram of hand-crafted and hybrid approaches (a) and end-to-end approach (b). Red bounding boxes highlight the identified targets in the
final results, shown on colour-coded echograms for better visualization.
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Echograms from the same site captured using four different frequencies.
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Region of Interest (ROI) extractor

“Counts” Images (4 frequency channels)
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Region of Interest (ROI) extractor
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Region of Interest (ROI) extractor
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Region of Interest (ROI) extractor

|

67
kHz
=
125
kHz
==
200
kHz
==
455
kHz
=

Denoising
1 B B R |
Adaptive
Thresholding

200
kHz

e RE LE L H |

455
kHz

Opening + Closing

kHz

szl ez gs]ez]

Score Matrix

L 4

Filtering by size

4

Filtering by
orientation

4

Detected
ROIs

* Sum the values on all four frequencies (binary)
* Max value for a given position: 4

200 400 600 800 1000 1200
250

300
350
400
450

200 400 GO0 800 1000 1200 200 400 G0O 200 1000 1200 500

550

200 400 600 800 1000 1200

Morphologically filtered echograms (left), score matrix (right).

@

Proposed Approach



Region of Interest (ROI) extractor
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Region of Interest (ROI) extractor
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Region of Interest (ROI) extractor
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Region of Interest (ROI) extractor
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Region of Interest (ROI) extractor
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Region of Interest (ROI) extractor
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General block diagram of hand-crafted and hybrid approaches (a) and end-to-end approach (b). Red bounding boxes highlight the identified targets in the
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Output from the ROI extractor
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Output from the ROI extractor
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End-to-end approach: scale issue
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End-to-end approach: scale issue

Scale a
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End-to-end approach: scale issue

Scale a

|i1p|.|l
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A generic convolution-based feature extractor (adapted from Pinaya et al., 2020).

Pinaya, W. H. L. et al. Machine Learning: Methods and Applications to Brain Disorders. Academic Press, 2020, pp. 173-191.
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End-to-end approach: scale issue

Scalea >>> Scaleb
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A generic convolution-based feature extractor (adapted from Pinaya et al., 2020).

Pinaya, W. H. L. et al. Machine Learning: Methods and Applications to Brain Disorders. Academic Press, 2020, pp. 173-191.
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Tiling strategy
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224x224

Tiling strategy

No resizing

—
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A generic convolution-based feature extractor (adapted from Pinaya et al., 2020).

Pinaya, W. H. L. et al. Machine Learning: Methods and Applications to Brain Disorders. Academic Press, 2020, pp. 173-191.
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Tiling strategy

(a) Original echogram (b) Three overlapping tiles

o S— s s i VA B | oS | s s Y G RS i ¥ At & s S gt N V! e it

(c) Multiple detection (inference) (d) Concatenated detection results

Tiling strategy used for training and inference. Original echogram (571x1200) with ground truth annotation highlighted in yellow (a). Tiles of 340x340 created
around the annotation for the training phase, highlighted in yellow (b). Multiple tiles (green), with the first tile highlighted in black, and individual detection results
(red bounding boxes) obtained during inference (c). Detection bounding boxes (red) obtained after post-processing (d).
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Ground truth Qualitative results

D Detection

1) Hand-crafted (SVM) 2) Hybrid (InceptionV3 [24]) 3) End-to-end (YOLOV2 [26])




Quantitative results

Method IoU | P R F1

) Hand-crafted (SVM [29]) 0.3 4541 | 65.63 | 53.67
) Hand-crafted (SVM [29]) 0.5 41.62 | 60.16 | 49.20
2) Hybrid (ResNet-50 [22]) 0.3 72.37 | 8594 | 78.57
2) Hybrid (ResNet-50 [22]) 0.5 62.50 | 74.20 | 67.80
2) Hybrid (DenseNet-201 [23]) 0.3 64.37 | 87.50 | 74.17
2) Hybrid (DenseNet-201 [23]) 0.5 55.75 | 75.718 | 64.24
2) Hybrid (InceptionV3 [24]) 0.3 78.99 | 85.16 | 81.95
2) Hybrid (InceptionV3 [24]) 0.5 68.12 | 73.44 | 70.68
3) End-to-end (YOLOV2 [26]) 0.3 73.08 | 89.06 | 80.28
3) End-to-end (YOLOV2 [26]) 0.5 67.31 | 82.03 | 73.94
3) End-to-end (Faster R-CNN [25]) | 0.3 66.90 | 74.22 | 70.37
3) End-to-end (Faster R-CNN [25]) | 0.5 45.07 | 50 47.41

P = precision, R = recall, F1 = Fl-score

®
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