Ancient Document Layout Analysis: Autoencoders meet Sparse Coding

Homa Davoudi, Marco Fiorucci, Arianna Traviglia

Center for Cultural Heritage Technology (CCHT), Istituto Italiano di Tecnologia (IIT) Venice, Italy

Historical Document Layout Analysis

- Segmenting into homogeneous regions:
 - Blocks of text, side notes, drawings, tables, etc.
- Key preprocessing step in various applications
- An open problem for historical documents
 - No structured text arrangement
 - High degradation

[G. M. Binmakhashen and S. A. Mahmoud, "Document layout analysis: A comprehensive survey," ACM Comput. Surv., vol. 52, no. 6, 2019.]

Deep Neural Networks for Doc layout Analysis

- Two main Categories:
 - o Image to image mapping

• Representation learning based methods

A novel unsupervised sparse representation learning method

Propose DLA Pipeline

- Extract fixed size patches
- Compute Sparse representation vectors
- Classify each pixel by a feed-forward network

Neural Sparse Coding

- Classical sparse coding :
 - Restricted to linear combination of sparse features and dictionary atoms
- DNN based sparse coding:
 - Train sparse encoder in a supervised way

o model iterative optimization steps

Proposed method: Encoder and Sparse representation trained simultaneously without unfolding

Model Architecture

Model Architecture

- Training
 - Dictionary learning:

Main strength of sparse coding is in encoding algorithm (not the learned dictionary)[1]

→ We adapt the dictionary learned by VQ-VAE [2]

[1] A. Coates and A. Y. Ng, "The importance of encoding versus training with sparse coding and vector quantization," in ICML, 2011.
[2] A. van den Oord, O. Vinyals et al., "Neural discrete representation learning," in Neurips 2017.

Training

Inspired by the ISTA algorithm **Encoder Training:** Ο $\min_{D} \frac{1}{T} \sum_{i=1}^{T} \min_{h^{(i)}} \frac{1}{2} \left\| x^{(i)} - Dh^{(i)} \right\|_{2}^{2} + \lambda \left\| h^{(i)} \right\|_{1} \quad \Longrightarrow \quad \begin{cases} (1) & h_{t+1}^{temp} = h_{t} - \alpha \nabla \| x - Dh_{t} \|_{2}^{2} & \text{minimize } \ell_{2} \text{disc}_{1} \\ (2) & h_{t+1} = shrink(h_{t+1}^{temp}, \lambda \alpha) & \text{Apply } \ell_{1} \text{norm} \end{cases}$ minimize ℓ_2 distance Sparse Encoder

Experiments and Results

DIVA-HisDB dataset

 $\,\circ\,$ A collection of three medieval manuscripts

- 40 pages for each: 20 Train, 10 Validation, 10 Test
- background, main text, comments and decoration
- $\,\circ\,$ Pixel-level annotation

 \circ image patches of 64 x 64

Experiments and Results

Comparison Results

	CB55			CSG18			CSG863			Overall		
	Acc(%)	IU(%)	F1(%)	Acc(%)	IU(%)	F1(%)	Acc(%)	IU(%)	F1(%)	Acc(%)	IU(%)	F1(%)
Sparse encoding	98.35	79.81	72.14	92.96	77.82	59.30	97.74	73.21	58.72	96.35	76.94	63.38
VQ-VAE	96.11	66.38	58.35	96.38	69.70	57.23	97.10	68.73	53.69	96.52	68.27	56.42
1-layer CNN [4]	60	48	_	53	42	_	57	45	_	56/7	45	_
CAE [3]	94.31	_	_	95.36	_	_	96.98	_	_	95.55	_	_

Ancient Document Layout Analysis: Autoencoders meet Sparse Coding

11/12

25th International Conference on Pattern Recognition, Milan, Italy

Thanks for Your Attention

Waiting to meet you virtually and discuss more!

