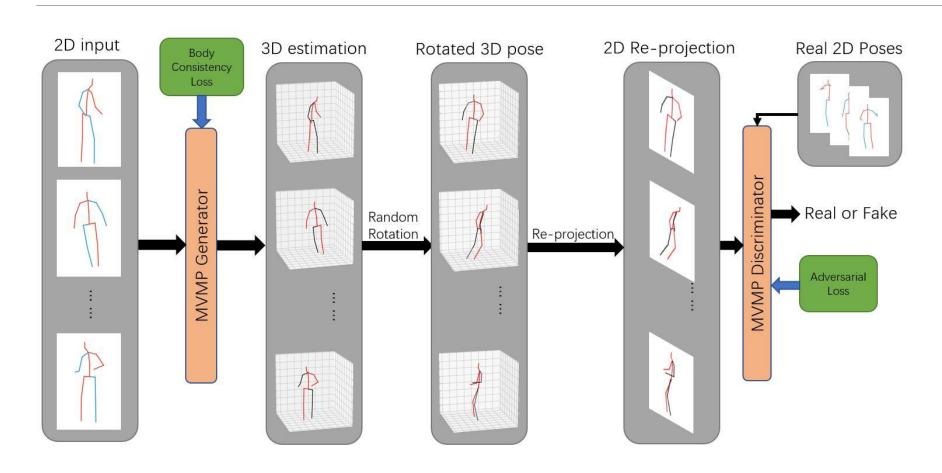

Unsupervised 3D Human Pose Estimation in Multi-view-multi-pose Video

CHENG SUN, DIEGO THOMAS, HIROSHI KAWASAKI KYUSHU UNIVERSITY

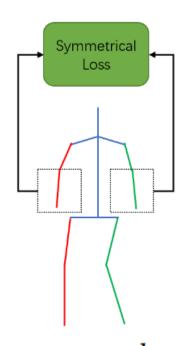

3D Human Pose Estimation

Overview

Structure

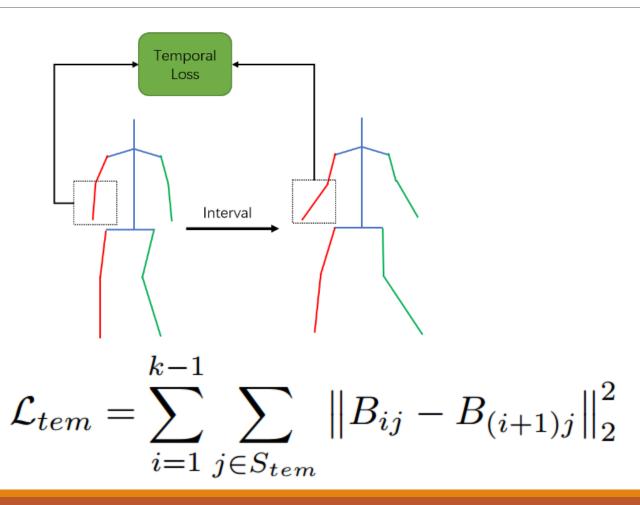
Adversarial Loss

Original Adversarial Loss:


$$\mathcal{L}_{adv} = E_{x \sim P_{data}} [\log D(x)] + E_{x \sim P_G} [\log(1 - D(x))]$$

Adversarial Loss

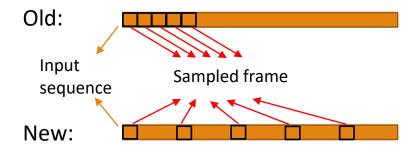
Wasserstein Adversarial Loss:

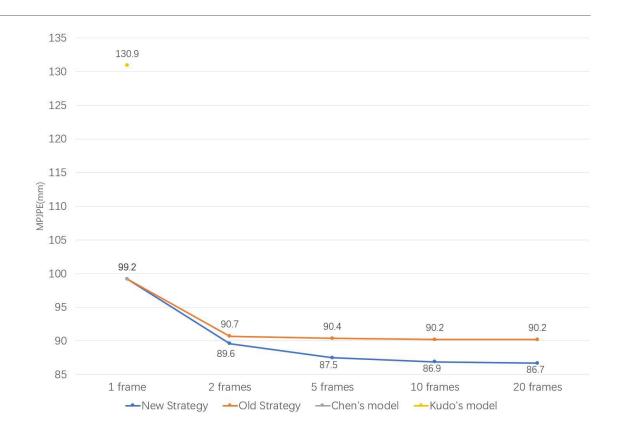

$$\mathcal{L}_{adv} = E_{x \sim P_{data}} \left[f_w(x) \right] - E_{x \sim P_G} \left[f_w(x) \right]$$

Body Consistency Loss

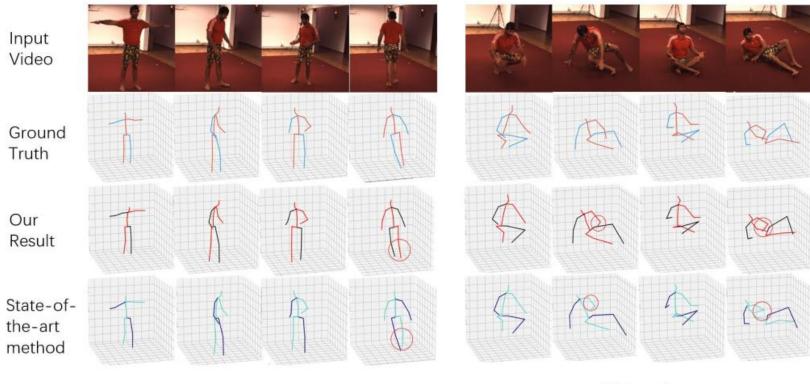
$$\mathcal{L}_{sym} = \sum_{i=1}^{k} \sum_{j \in S_{sym}} \|B_{ij} - B'_{ij}\|_{2}^{2}$$

Body Consistency Loss




Quantitative result

Method	Dir.	Disc.	Eat	Greet	Phone	Photo	Pose	Purch.	Sit	SitD.	Smoke	Wait	WalkD.	Walk	WalkT.	Avg
supervised																
Martinez et al. [1]	51.8	56.2	58.1	59.0	69.5	78.4	55.2	58.1	74.0	94.6	62.3	59.1	65.1	49.5	52.4	62.9
Iskakov et al. [28]	19.9	20.0	18.9	18.5	20.5	19.4	18.4	22.1	22.5	28.7	21.2	20.8	19.7	22.1	20.2	20.8
self-supervised																
Kocabas et al. [29]	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	60.6
semi-supervised																
Pavllo et al. [3]	45.2	46.7	43.3	45.6	48.1	55.1	44.6	44.3	57.3	65.8	47.1	44.0	49.0	32.8	33.9	46.8
weakly-supervised																
Wandt et al. [30]	77.5	85.2	82.7	93.8	93.9	101.0	82.9	102.6	100.5	125.8	88.0	84.8	72.6	78.8	79.0	89.9
Yang <i>et al</i> . [2]	51.5	58.9	50.4	57.0	62.1	65.4	49.8	52.7	69.2	85.2	57.4	58.4	43.6	60.1	47.7	58.6
unsupervised																
Kudo <i>et al</i> . [4]	125.0	137.9	107.2	130.8	115.1	127.3	147.7	128.7	134.7	139.8	114.5	147.1	130.8	125.6	151.1	130.9
Chen <i>et al</i> . [5]	97.1	99.4	83.2	93.8	100.3	115.4	95.2	96.9	111.4	112.7	94.1	104.1	101.5	86.3	96.5	99.2
Ours(2-frame)	89.9	92.4	78.5	91.8	93.0	97.1	88.7	86.4	97.1	101.0	89.2	98.3	90.3	71.5	79.0	89.6
Ours(5-frame)	88.0	89.6	75.0	91.3	90.9	93.5	86.8	81.5	93.7	100.3	88.0	97.2	87.6	70.8	78.4	87.5
Ours(10-frame)	87.4	89.1	74.7	90.2	90.5	93.3	86.2	80.1	93.5	99.7	87.8	96.4	87.2	70.3	77.6	86.9
Ours(20-frame)	87.1	88.7	74.6	90.0	90.3	93.4	85.7	80.2	93.1	99.9	87.4	96.3	87.2	70.0	77.1	86.7


Quantitative result

Different sampling strategy:

Qualitative result

Video of Direction

Video of Sitting Down