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Introduction

Our suggested method for interpolation can be used in many latent variable
model frameworks. We concentrate on the Variational Auto Encoder (VAE)
model for image reconstruction. The VAE model consists of:

I An encoder qφ(z |x), transforming images x to a representation (of lower
dimension) z , through a neural network function.

I A prior p(z), enforcing a structure on the latent distribution of data

I A decoder, pθ(x |z), transforming a z-representation to an image
representation x .
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Introduction

Most common interpolation method is linear interpolation:

1. Encode x (i), x (j) through sampling z(i) ∼ qφ(z |x (i)), z(j) ∼ qφ(z |x (j))
2. Pick points of suitable distance along the line between decoded data points:

[z(i), z , ..., z(j)]

3. Decode the latent path by sampling

[x (i) ∼ pθ(x |z(i)), x ∼ pθ(x |z), ..., x (j) ∼ pθ(x |z(j))]
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Problem and idea

I Good samples are generally produced close to data latent representation.

I Many prior structures, especially in higher dimension, and especially the
commonly used normal prior, enforces latent data representations with
”holes”.

I Lines between data points hence often traverse through ”empty” areas of
the latent space, creating images of low fidelty.

I Many methods have been developed to remedy this problem, notably
spherical interpolation for higher dimensional normal priors.

I We suggest a novel stochastic interpolation scheme, that also address the
above problem. It is to our knowledge the first stochastic interpolation
method presented. We argue for that stochasticity is preferable and
interesting in its own right for some applications.
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Diffusion approach

I Our approach starts from the following obsdervation. Given a probability p
of the form p(x) ∝ e−E(x) a Langevin diffusion of the form

dX = −∇E (X)dt +
√

2dW (1)

has p as its stationary distribution (under suitable conditions)

I In the context of VAE with p(x) as the prior, the process will reside ”close”
to latent data representations.
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Diffusion approach

I In order to create an interpolation scheme from the stochastic process, we
note that the corresponding bridge process, Xx0xT from x0 to xT is given by

dXx0xT=
(
−∇E (Xx0xT ) + σσT∇ log p(xT ,T |Xx0xT , t)

)
dt

+ σdW, (2)

I This gives a stochastic interpolation scheme for a completely general prior.
However, the term p is hard to calculate for most priors. This can be solved
with numerical methods. For some priors, notably the normal distribution, p
can be solved for explicitly.
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Diffusion approach

If the prior p(z) is an n-dimensional standard normal distribution (e.g the prior in
the VAE setting),

p(z) = (2π)−n/2e−2−1zzT , (3)

it follows that the bridge for the corresponding diffusion process reads

dZ =
[
− Z +

2e−(T−t)

1− e−2(T−t)
(zT − Ze−(T−t))

]
dt

+
√

2dW , (4)

We use this bridge process for interpolation between two latent data
representations, when the VAE prior p is a normal distribution.

6 / 12



Gaussian Process approach

The approach outlined has the advantage of being very general. However, for
normal priors, Gaussian processes can be deployed as well. The kernel
parameterization of Gaussian processes allows for greater control over the
properties of the bridge. For our examples, we use two kernels

k(h) = exp
{
− β|h|α

}
(5)

k(h) = exp
{
− 2

`2
sin2

(
π
|h|2

p

)}
(6)

Kernel (5) is suitable for strong control over smoothness in image transitions.
Kernel (6) allows for a periodic behavior of the interpolation path.
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Gaussian Process approach

In order to construct an interpolation path with a Gaussian Processes of kernel
k , we consider the joint Gaussian distribution of (Z (0),Z (t1), . . . ,Z (tm),Z (T )),
conditioning on (Z (0),Z (T )). Using the properties of conditional Gaussian
distributions we obtain the mean µ̂z0,zT (t) and covariance k̂(t, s) for the bridge
process

µ̂z0,zT (t) =
z0[k(t)−k(T−t)k(T )]+zT [k(T−t)−k(t)k(T )]

1− k(T )2
(7)

and similar holds for the bridge covariance.
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MNIST

For lower dimension, the normal distribution is concentrated around the origin,
and linear interpolation generally works well. Here, the commonly used (in
higher dimensions) spherical interpolation has unsatisfactory results. The picture
shows the benefit of our stochastic method in that it can be adjusted so as to
reproduce linear interpolation, through shortening the interpolation time T .
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MNIST
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HUMAN POSES

In order to test the method over higher dimensions and in order to demonstrate
the interesting stochastic property of the method, we deploy the interpolation
scheme over the data set Human Poses.
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HUMAN POSES

The following samples where generated with a Gaussian process bridge between
two human pose pictures. The kernel is periodic. Note that for every sample,
the start and end point is the same, and that the method hence produces an
interesting and plausible variability.

I Sample ”struggling while walking”:
https://youtu.be/BKErJVI2bSA=

I Sample "walking with confidence":

https://youtu.be/94-L5idkwJY=

I Sample "avoiding projectile while walking":

https://youtu.be/oPTB GrJzPQ=
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