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Introduction

* Event-based camera
— Captures changes in intensity
— Asynchronous
— Advantages

* High temporal resolution,

* High dynamic range and
* No motion blur X recorded events in
. space and through time
* Key question

— How to extract meaningful and useful information?



Prior Work

 Handcrafted feature extraction approaches for event-based
data

* Learning based approaches for event-based data
— Spiking Neural Networks (SNNs) [21] for event-based camera
— Standard Neural Networks [5], [11], [4], [3] for event-based camera

* Applications
— Gesture recognition [22],
— Object recognition [27], [4],
— Face detection [7],
— Optical flow prediction [37], [34] and
— Image reconstruction [26]



Motivation

* Data-adaptive, learned single-layer architectures for event-
based data not studied extensively

* Unknown to which extend a single-layer model could be
useful for event-based data and

* How the spatial and temporal resolution of the event-based
data impacts performance for a recognition task



Unsupervised Feature Learning

Local volume of events extraction
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Unsupervised Feature Learning

* Two part recognition pipeline

Part one: unsupervised feature learning + pooling

(learning a mapping with basis vectors as parameters) | part two: Classifier learning
-Direct problem formulation _Linear SVM
-Inverse problem formulation
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Numerical Evaluation

Data sets
— N-MNIST (10 digits, around 1000 samples per digit)
— N-CARS (foreground/background, around 10000 per class)
— N-Caltech101 (101 objects, dis-balanced number of samples per object)

Learned unsupervised feature mapping as proposed using
— Direct and
— Inverse problem formulation

Classifier
— Linear SVM

Used quantitative measures
— Acc. (measured as average of the classifier prediction accuracy over the test set)



Numerical Evaluation

e Accuracy on all of the data sets

Data set

Acc. % (inverse)

Acc. % (direct)

N-MNIST
N-Calteh101
N-CARS

98.1
78.4
84.7

96.8
7.1
81.3

e Comparison with state-of-the-art on the Caltech101

dataset
~ Method | Ace. %
Hfist [14] 06.0
HOTS [2] 21.0
Garbor-SNN [4 1 ] 19.2
HATS[4] 64.2
DART/[30] 70.3

Method Acc. % |
Proposed (inverse) | 78.4
Proposed (direct) 77.1

J\

| Method Acc. % |
EST[16] | 817
VID2E[10]| 90.1

}

single-layer architectures

|

multi-layer architectures



Numerical Evaluation

e Accuracy under varying: number of basis vectors, size of the local
volume and number of accumulation intervals

Method Number of Basis Vectors
1000 | 1500 | 1700 | 2000
Proposed (inverse) | 73.2 | 74.5 | 78.4 | 76.0
Proposed (direct) | 74.3 | 77.0 | 77.1 | 75.5

Method Size of the Local Volume
dx4dxd | 4x12x12 | 4x16x16 | 4x21x 21
Proposed (inverse) | 69.6 78.4 76.4 75.2
Proposed (direct) 64.8 77.1 74.5 75.1
Method Number of Accumulation Intervals
2 4 7 10
Proposed (inverse) | 61.7 | 72.4 | 78.4 76.3
Proposed (direct) | 63.2 | 69.1 | 77.1 74.1
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