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Introduction 

• Event-based camera  

– Captures changes in intensity 

– Asynchronous 

– Advantages 

• High temporal resolution,  

• High dynamic range and  

• No motion blur 

• Key question  

– How to extract meaningful and useful information? 

 



Prior Work 

• Handcrafted feature extraction approaches for event-based 
data 
 

• Learning based approaches for event-based data 
– Spiking Neural Networks (SNNs) [21] for event-based camera 
– Standard Neural Networks [5], [11], [4], [3] for event-based camera 

 

• Applications 
– Gesture recognition [22],  
– Object recognition [27], [4],  
– Face detection [7], 
– Optical flow prediction [37], [34] and  
– Image reconstruction [26] 

 

 
 



Motivation 

• Data-adaptive, learned single-layer architectures for event-
based data not studied extensively 

 

• Unknown to which extend a single-layer model could be 
useful for event-based data and 

 

• How the spatial and temporal resolution of the event-based 
data impacts performance for a recognition task 



Unsupervised Feature Learning 

• Local volume of events extraction 

 

 

 

 

 

 

 



Unsupervised Feature Learning 

• Two part recognition pipeline 

 

 
Part one: unsupervised feature learning + pooling 
(learning a mapping with basis vectors as parameters) 

-Direct problem formulation 
-Inverse problem formulation 

Part two: Classifier learning 
-Linear SVM 



Numerical Evaluation 

• Data sets 
– N-MNIST (10 digits, around 1000 samples per digit) 
– N-CARS (foreground/background, around 10000 per class) 
– N-Caltech101 (101 objects, dis-balanced number of samples per object) 

 

• Learned unsupervised feature mapping as proposed using 
– Direct and 
– Inverse problem formulation 

 
• Classifier  

– Linear SVM 

 
• Used quantitative measures 

– Acc. (measured as average of the classifier prediction accuracy over the test set) 

 



• Accuracy on all of the data sets 

 

 

 

• Comparison with state-of-the-art on the Caltech101 
dataset 

 

Numerical Evaluation 

single-layer architectures multi-layer architectures 



• Accuracy under varying: number of basis vectors, size of the local 
volume and number of accumulation intervals 

 

 

Numerical Evaluation 
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