25th International Conference on Pattern Recognition

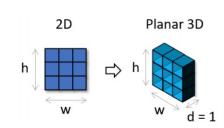
Planar 3D Transfer Learning for End to End Unimodal MRI Unbalanced Data Segmentation

Presenter: Martin Kolarik

Martin Kolarik, Radim Burget, Carlos M. Travieso-Gonzalez, Jan Kocica

Introduction

- Paper presents novel 2D → 3D transfer learning method for semantic segmentation
- Experiments evaluated on Multiple sclerosis lesion segmentation from unimodal MRI Flair scan
 - Heavily unbalanced segmentation
- Complete source code published:
 - https://github.com/mrkolarik/transfer2d3d



(a) Convolutional kernel mapping from 2D to 3D

(c) Segmentation mask

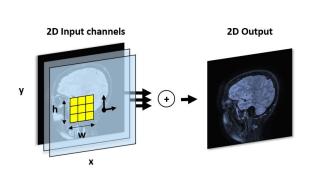
Motivation 1# – 2D vs 3D convolutional nets

2D Convolutional networks

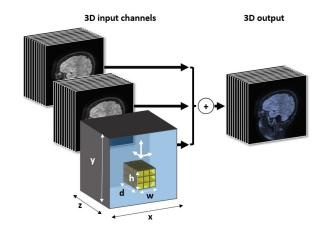
- + Suitable for 2D data
- Processing 3D volume slice by slice
- + Availability of transfer learning

3D Convolutional networks

- + Suitable for 3D data
- + Processing 3D data as volumes
- Lack of sources of transfer learning



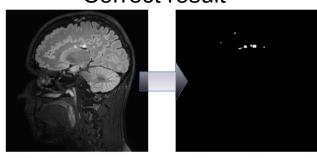
VS



Motivation 2# – segmenting unbalanced data

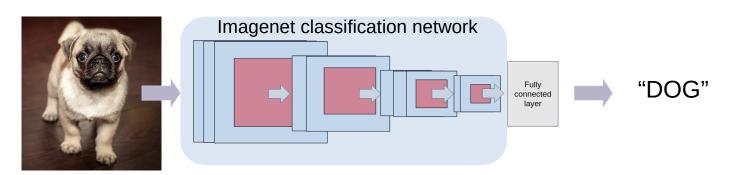
- Network's aim is to minimize loss function during training
 - Segmenting heavily unbalanced data is problematic
 - Network easily converges to wrong solution (negative output)
- Solutions:
 - Specialized loss functions
 - Class / sample weighting
- Problematic when using large 3D feature size (our case 16x256x256)

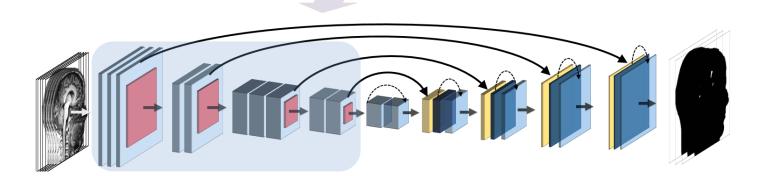
Correct result



Wrong segmentation

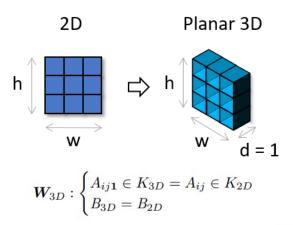
Transfer learning in semantic segmentation

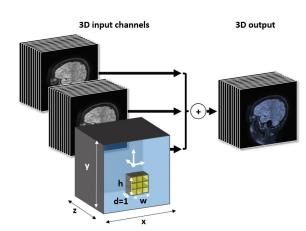




Weights transformation 2D → Planar 3D

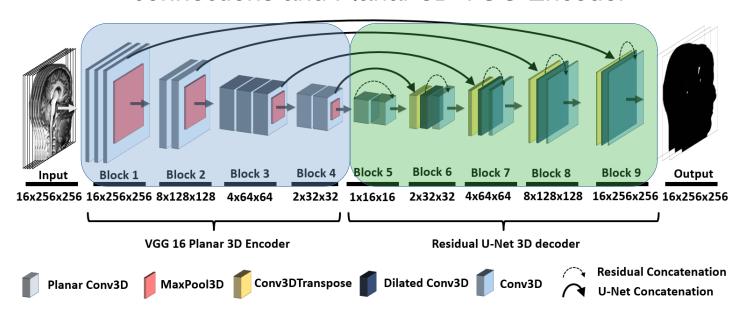
- Aim is to combine the 3D data processing capability of 3D neural networks with 2D domain transfer learning sources availability
- We present a mapping operation of convolutional neural network weights from 2D to Planar 3D
 - application in transfer learning for semantic segmentation





Network architecture

Based on 3D U-Net with implemented residual skip connections and Planar 3D VGG Encoder



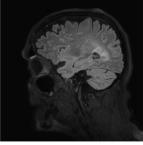
Data description

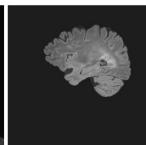
- MSSEG 2016 dataset
- The dataset consists of
 - 15 MRI head scans of
 - 15 different patients
 - Scanned from 3 different medical centers
- Data is heavily unbalanced
 - Lesion voxel ration 0.2 %

Center	Lesion voxel ratio	Scans	Axial Resolution	
01	0.311 %	5	144 × 512 × 512	
07	0.141 %	5	$128 \times 224 \times 256$	
08	0.144 %	5	$261 \times 336 \times 336$	
Total	0.199 %	15		

Unprocessed scan

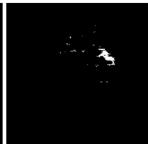
Pre-processed scan





Consensus mask

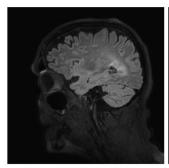
Single expert mask

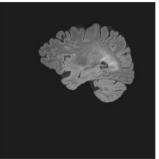


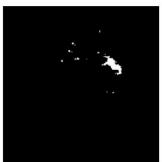
Results

- Our planar 3D res-u-net achieved a score of 0.611 for Dice coefficient
 - best published end to end method achieved score of 0.512
 - Best unimodal not end to end method achieved score of 0.598

Unimodal met	hods processing	g raw input data end	l-to-end
Authors	End-to-end	Dice coef.	Sensitivity
Knight, et al. [42]	Yes	0.512 ± 0.014	0.45 ± 0.05
Our Result	Yes	$\boldsymbol{0.611 \pm 0.052}$	$\boldsymbol{0.60 \pm 0.10}$
Unimodal method	ls processing in	nput data after brain	extraction
Authors	End-to-end	Dice coef.	Sensitivity
Mahbod, et al. [43]	No	0.448 ± 0.064	0.53 ± 0.03
McKinley, et al. [31]	No	0.598 ± 0.059	0.65 ± 0.03
	Human exp	ert results	
Expert annotation		Dice coef.	Sensitivity
Least precise human ex	xpert	0.670 ± 0.008	0.72 ± 0.06
Average human expert		0.705 ± 0.027	0.77 ± 0.02







(a) Raw MRI FLAIR scan slice (our input)

(b) Pre-processed, brain extracted MRI

(c) Mask predicted by our system

(d) Consensus segmentation mask

Conclusion

- We presented a novel end-to-end learning approach to transfer learning utilizing mapping existing CNNs weights from 2D to planar 3D representation
- We have shown the effectiveness of our approach on the problem of heavily unbalanced data semantic segmentation
- We published complete source code under open-source license
 - Accompanying paper at the Reproducibility workshop

Thank you for your attention!

