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Motivation

The estimation of the relative and absolute camera pose is a fundamental
problem in computer vision

Appllcatlons
3D reconstruction
* Localization
« SLAM
« AR&VR
* Autonomous Driving




Motivation

High or real-time performance, robust and stable solutions.

Contaminated input measurements — problems have to be solved for multiple
input samples (RANSAC)

Processing time in RANSAC exponentially grows with the sample size
Minimal number of point correspondences — Minimal problems— complex
systems of polynomial equations

E.g. Relative pose between two calibrated

cameras.
5 image point correspondences
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Motivation

All “non-degenerate” instances of one problem result in systems of equations of the
“same form” (same unknowns, same monomials, different coefficients)

X;-TEXj =0,5=1,...,5
det(E) =0
2 (EE') E — trace(EE')E = 0

!

Solve many instances of a given problem with the same
system of polynomial equations, only with different
coefficients.

Need to solve quickly and accurately.



State-of-the-art methods

* Creating specific efficient solvers
* Can solve only systems of equations of a given form

« Grobner basis-based method [1,2]
» Applicable to most minimal problems
* Well explored and optimized
- Automatic generator

* Sparse restultant-based method
« Alternative method with comparable stability and efficiency [3]
» Adding polynomial of special form f, = x; — /1

[1] V. Larsson et al. Efficient solvers for minimal problems by syzygy-based reduction. In CVPR, 2017.
[2] V. Larsson et al. Beyond grobner bases: Basis selection for minimal solvers. In CVPR, 2018.

[3] S. Bhayani, Z. Kukelova, and J. Heikkila, “A sparse resultant based method for efficient minimal solvers,” in CVPR, 2020.



Grobner basis method

Offline preprocessing

Input equations Flimination template matrix
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Main idea

Larger matrix for Eigendecomposition
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Can be numerically unstable Figendecomposition — Solutions



Hidden variable resultant methoa

Offline preprocessing

Input equations Extended set of polynomials
- XY nyg K * * 73 % * ] _xy_
yZZ yzfz x  z%x * * y2
f1 * * * % XZ - . xfl * 7 % * 7 % * || x2
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Online solver b
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2 : detM(z) = 0 — Solutions to z
% * AR * %

However determinant computation may be numerically unstable



Extracting the solutions

We rewrite it as a Polynomial Eigenvalue Problem (PEP) [1]
M(z) = My + zM;+ ... +z'M,

* Which can be solver as a Generalized Eigenvalue Problem (GEP) [1]
Av =2zBv

l

A and B contain only coefficients of original system

l

Efficient tools for eigendecomposition - Solutions

[1] J. Heikkila. Using sparse elimination for solving minimal problems in computer vision. In ICCV, 2017.



Features of our proposed approach

* Polytope based approach is used for extending the given polynomial system [1]

* Extensions and improvements to the approach by Heikkila [1]:
* Testing polynomial combinations of all sizes ——— reduction in solver size

accurate solver

* Explicit test for rank
* A method to remove parasitic (zero) eigenvalues in the offline step,

* Leading to improved solver size for some minimal problems
* Our proposed approach is applicable to many minimal problems

* (Can be easily automated

[1] J. Heikkila. Using sparse elimination for solving minimal problems in computer vision. In ICCV, 2017.



Absolute pose estimation for refractive surfaces

Solver stability in close-to-degenerate scenes

PGPr (Degenerate: Xi, Xj, C, n are coplanar)

P5Pr (Degenerate: Xi, Xj, C, n are coplanar)
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GB[1] Heur [2] Res [3] Our GBJ[1] Heur [2] Res [3] Our GB[1] Heur [2] Res [3] Our
G-J/QR 199 x 215 188 x 215 78 x 83 - 636 x 654 398 x 416 248 x 300 - 913 x 317 597 x 621 142 x 74 -
EIG 44 x 44 16 x 16 25 x 25 - 18 x 18 18 x 18 52 x 52 - 24 x 24 24 x 24 32x32 -
GEP - - - 36 x36 - - - 110x 110 - - - 124 x 124
E::; 0.4937 0.6683 0.3344 0.4743 46193 2.0822 1.53 5.192 10.5689 49556 0.7292 6.5612




More minimal problems

Comparison of important computation steps and stability of some more minimal problems

Our GB [1] Res [3]
Problem
Size Stability Size Stability Size Stability
GEP Mean Median Fail. (%) GJ Eig. Mean Median Fail. (%) GJ Eig. Mean Median Fail. (%)
Rolling shutter pose 20x 20 | -12.97 -13.09 0.6 47 x 55 8x8 -12.51 -12.70 0 47 x 55 8x8 -12.16 -12.34 0

Rel. pose 6pt. + sided rad. dist. 30x30 | -1247 -12.69 0.2 34 x 60 26x26 | -11.42 -11.72 0.52 14 x 40 26x26 | -11.65 -11.94 0.34

Abs. pose quiver 43 x 43 -12.00 -12.48 0 233x253 | 20x20 | -11.18 -11.51 0.32 68 x 92 24 x24 | -12.39 -12.60 0.08

Rel. pose 9pt. + 2 rad. dist. 72 x72 -12.96 -13.11 0.1 165x 189 | 24x24 -9.81 -10.31 5.14 0 x117 | 27x27 -9.81 -10.02 3.32

Rel. pose 7pt. + 1 sided rad. dist. 35x35 -12.31 -12.53 0.02 51x70 19x19 | -10.57 -10.90 0.30 51x70 19x19 | -10.71 -10.95 0.38

]
[2]
3]

]

[1] V. Larsson et al. Efficient solvers for minimal problems by syzygy-based reduction. In CVPR, 2017.
V. Larsson et al. Beyond grobner bases: Basis selection for minimal solvers. In CVPR, 2018.

S. Bhayani, Z. Kukelova, and J. Heikkila, “A sparse resultant based method for efficient minimal solvers,” in CVPR, 2020.
[4] S. Haner and K. Astrém. Absolute pose for cameras under flat refractive interfaces. In CVPR, 2015.




Conclusions

 We studied a hidden variable sparse resultant-based approach for solving minimal
camera geometry problems in a stable and efficient way.

* QOur proposed approach is an important alternative to the state-of-the-art Grobner
basis-based approach for generating efficient minimal solvers.

* Our proposed approach may be useful for solving complex problems where the
state-of-the-art solvers have numerical instabilities.

Thank You

For more details, visit our poster session, PS3.11
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