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Motivation
The estimation of the relative and absolute camera pose is a fundamental 
problem in computer vision 

Applications:
• 3D reconstruction 
• Localization
• SLAM 
• AR & VR 
• Autonomous Driving
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• High or real-time performance, robust and stable solutions.
• Contaminated input measurements problems have to be solved for multiple

input samples (RANSAC)
• Processing time in RANSAC exponentially grows with the sample size
• Minimal number of point correspondences       Minimal problems complex 

systems of polynomial equations

Motivation

rotation R
translation t

E.g. Relative pose between two calibrated 
cameras:

5 image point correspondences



All “non-degenerate” instances of one problem result in systems of equations of the 
“same form” (same unknowns, same monomials, different coefficients)

Motivation

Solve many instances of a given problem with the same 
system of polynomial equations, only with different 

coefficients.
Need to solve quickly and accurately.



State-of-the-art methods
• Creating specific efficient solvers
• Can solve only systems of equations of a given form

• Grobner basis-based method [1,2]
• Applicable to most minimal problems
• Well explored and optimized
• Automatic generator

• Sparse restultant-based method
• Alternative method with comparable stability and efficiency [3]
• Adding polynomial of special form 𝑓! = 𝑥" − 𝜆

[1] V. Larsson et al. Efficient solvers for minimal problems by syzygy-based reduction. In CVPR, 2017. 
[2] V. Larsson et al. Beyond grobner bases: Basis selection for minimal solvers. In CVPR, 2018.
[3] S. Bhayani, Z. Kukelova, and J. Heikkila, “A sparse resultant based method for efficient minimal solvers,” in CVPR, 2020.
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Main idea
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Hidden variable resultant method
Extended set of polynomials

det𝐌 𝑧 = 0 → Solutions to 𝑧
However determinant computation may be numerically unstable



Extracting the solutions
We rewrite it as a Polynomial Eigenvalue Problem (PEP) [1]

• Which can be solver as a  Generalized Eigenvalue Problem (GEP) [1]
𝐀 𝑣 = 𝑧𝐁𝑣

𝐀 and 𝐁 contain only coefficients of original system

Efficient tools for eigendecomposition Solutions

[1] J. Heikkilä. Using sparse elimination for solving minimal problems in computer vision. In ICCV, 2017. 



Features of our proposed approach
• Polytope based approach is used for extending the given polynomial system [1]

• Extensions and improvements to the approach by Heikkila [1]:
• Testing polynomial combinations of all sizes            reduction in solver size
• Explicit test for rank            accurate solver
• A method to remove parasitic (zero) eigenvalues in the offline step,
• Leading to improved solver size for some minimal problems

• Our proposed approach is applicable to many minimal problems

• Can be easily automated

[1] J. Heikkilä. Using sparse elimination for solving minimal problems in computer vision. In ICCV, 2017. 



Absolute pose estimation for refractive surfaces

Comparison of important computation steps of different solvers
Comp. 
step 𝐏𝟓𝐏𝐫

𝐏𝟔𝐏𝐟𝐫 𝐏𝟐𝐏𝐫

GB[1] Heur [2] Res [3] Our GB[1] Heur [2] Res [3] Our GB[1] Heur [2] Res [3] Our

G-J/QR 199 x 215 188 x 215 78 x 83 - 636 x 654 398 x 416 248 x 300 - 913 x 317 597 x 621 142 x 74 -

EIG 44 x 44 16 x 16 25 x 25 - 18 x 18 18 x 18 52 x 52 - 24 x 24 24 x 24 32 x 32 -

GEP - - - 36 x 36 - - - 110 x 110 - - - 124 x 124

Time 
(ms) 0.4937 0.6683 0.3344 0.4743 4.6193 2.0822 1.53 5.192 10.5689 4.9556 0.7292 6.5612

Solver stability in close-to-degenerate scenes



More minimal problems

Problem

Comparison of important computation steps and stability of some more minimal problems

Our GB [1] Res [3]

Size Stability Size Stability Size Stability

GEP Mean Median Fail. (%) GJ Eig. Mean Median Fail. (%) GJ Eig. Mean Median Fail. (%)

Rolling shutter pose 20 x 20 -12.97 -13.09 0.6 47 x 55 8 x 8 -12.51 -12.70 0 47 x 55 8 x 8 -12.16 -12.34 0

Rel. pose 6pt. +  sided rad. dist. 30 x 30 -12.47 -12.69 0.2 34 x 60 26 x 26 -11.42 -11.72 0.52 14 x 40 26 x 26 -11.65 -11.94 0.34

Abs. pose quiver 43 x 43 -12.00 -12.48 0 233 x 253 20 x 20 -11.18 -11.51 0.32 68 x 92 24 x 24 -12.39 -12.60 0.08

Rel. pose 9pt. + 2 rad. dist. 72 x 72 -12.96 -13.11 0.1 165 x 189 24 x 24 -9.81 -10.31 5.14 90 x 117 27 x 27 -9.81 -10.02 3.32

Rel. pose 7pt. + 1 sided rad. dist. 35 x 35 -12.31 -12.53 0.02 51 x 70 19 x 19 -10.57 -10.90 0.30 51 x 70 19 x 19 -10.71 -10.95 0.38

[1] V. Larsson et al. Efficient solvers for minimal problems by syzygy-based reduction. In CVPR, 2017. 
[2] V. Larsson et al. Beyond grobner bases: Basis selection for minimal solvers. In CVPR, 2018.
[3] S. Bhayani, Z. Kukelova, and J. Heikkila, “A sparse resultant based method for efficient minimal solvers,” in CVPR, 2020.
[4] S. Haner and K. Åström. Absolute pose for cameras under flat refractive interfaces. In CVPR, 2015.
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Conclusions
• We studied a hidden variable sparse resultant-based approach for solving minimal 

camera geometry problems in a stable and efficient way.
• Our proposed approach is an important alternative to the state-of-the-art Grobner

basis-based approach for generating efficient minimal solvers.
• Our proposed approach may be useful for solving complex problems where the 

state-of-the-art solvers have numerical instabilities.


