

Computing stable resultant-based minimal solvers by hiding a variable

Snehal Bhayani¹ Zuzana Kukelova² Janne Heikkiä¹

¹Center for Machine Vision and Signal Analysis, University of Oulu ² Visual Recognition Group, Faculty of Electrical Engineering, Czech Technical University in Prague

> PAPER ID: 1668 ICPR 2020

Motivation

The estimation of the relative and absolute camera pose is a fundamental problem in computer vision

Applications:

- 3D reconstruction
- Localization
- SLAM
- AR & VR
- Autonomous Driving

Motivation

- High or real-time performance, robust and stable solutions.
- Contaminated input measurements problems have to be solved for multiple input samples (RANSAC)
- Processing time in RANSAC exponentially grows with the sample size
- Minimal number of point correspondences → Minimal problems → complex systems of polynomial equations

E.g. Relative pose between two calibrated cameras: 5 image point correspondences $\mathbf{x}_{j}^{T}\mathbf{E}\mathbf{x}_{j} = 0, \ j = 1, \dots, 5$ $\det(\mathbf{E}) = 0$ $2(\mathbf{E}\mathbf{E}^{T})\mathbf{E} - trace(\mathbf{E}\mathbf{E}^{T})\mathbf{E} = 0$

Motivation

All "non-degenerate" instances of one problem result in systems of equations of the "same form" (same unknowns, same monomials, different coefficients)

$$\mathbf{x}_{j}^{\prime \top} \mathbf{E} \, \mathbf{x}_{j} = 0, \ j = 1, \dots, 5$$

 $\det(\mathbf{E}) = 0$
 $2 \left(\mathbf{E} \mathbf{E}^{T} \right) \mathbf{E} - trace(\mathbf{E} \mathbf{E}^{T}) \mathbf{E} = 0$

Solve many instances of a given problem with the same system of polynomial equations, only with different coefficients. Need to solve quickly and accurately.

State-of-the-art methods

- Creating specific efficient solvers
 - Can solve only systems of equations of a given form
- Grobner basis-based method [1,2]
 - Applicable to most minimal problems
 - Well explored and optimized
 - Automatic generator
- Sparse restultant-based method
 - Alternative method with comparable stability and efficiency [3]
 - Adding polynomial of special form $f_0 = x_i \lambda$

[1] V. Larsson et al. Efficient solvers for minimal problems by syzygy-based reduction. In CVPR, 2017.

[2] V. Larsson et al. Beyond grobner bases: Basis selection for minimal solvers. In CVPR, 2018.

[3] S. Bhayani, Z. Kukelova, and J. Heikkila, "A sparse resultant based method for efficient minimal solvers," in CVPR, 2020.

Gröbner basis method

Offline preprocessing

Main idea

Replace

with

Can be numerically unstable

Larger matrix for Eigendecomposition

Eigendecomposition → Solutions

Hidden variable resultant method Offline preprocessing

$$\longrightarrow \mathbf{M}(z)b = 0$$

det $\mathbf{M}(z) = 0 \rightarrow \text{Solutions to } z$ However determinant computation may be numerically unstable

Extracting the solutions

We rewrite it as a Polynomial Eigenvalue Problem (PEP) [1] $\mathbf{M}(z) = \mathbf{M}_0 + z\mathbf{M}_1 + \ldots + z^l\mathbf{M}_l$

• Which can be solver as a Generalized Eigenvalue Problem (GEP) [1]

[1] J. Heikkilä. Using sparse elimination for solving minimal problems in computer vision. In ICCV, 2017.

Features of our proposed approach

- Polytope based approach is used for extending the given polynomial system [1]
- Extensions and improvements to the approach by Heikkila [1]:
 - Testing polynomial combinations of all sizes ——— reduction in solver size
 - Explicit test for rank → accurate solver
 - A method to remove parasitic (zero) eigenvalues in the offline step,
 - Leading to improved solver size for some minimal problems
- Our proposed approach is applicable to many minimal problems
- Can be easily automated

[1] J. Heikkilä. Using sparse elimination for solving minimal problems in computer vision. In ICCV, 2017.

Absolute pose estimation for refractive surfaces

Solver stability in close-to-degenerate scenes

Comparison of important computation steps of different solvers													
Comp. step		P5P	r			Р	6Pf _r		P2P _r				
	GB[1]	Heur [2]	Res [3]	Our	GB[1]	Heur [2]	Res [3]	Our	GB[1]	Heur [2]	Res [3]	Our	
G-J/QR	199 x 215	188 x 215	78 x 83	-	636 x 654	398 x 416	248 x 300	-	913 x 317	597 x 621	142 x 74	-	
EIG	44 x 44	16 x 16	25 x 25	-	18 x 18	18 x 18	52 x 52	-	24 x 24	24 x 24	32 x 32	-	
GEP	-	-	-	36 x 36	-	-	-	110 x 110	-	-	-	124 x 124	
Time (ms)	0.4937	0.6683	0.3344	0.4743	4.6193	2.0822	1.53	5.192	10.5689	4.9556	0.7292	6.5612	

More minimal problems

	Comparison of important computation steps and stability of some more minimal problems													
Problem	Our				GB [1]					Res [3]				
rioblem	Size	Stability			Size		Stability			Size		Stability		
	GEP	Mean	Median	Fail. (%)	GJ	Eig.	Mean	Median	Fail. (%)	GJ	Eig.	Mean	Median	Fail. (%)
Rolling shutter pose	20 x 20	-12.97	-13.09	0.6	47 x 55	8 x 8	-12.51	-12.70	0	47 x 55	8 x 8	-12.16	-12.34	0
Rel. pose 6pt. + sided rad. dist.	30 x 30	-12.47	-12.69	0.2	34 x 60	26 x 26	-11.42	-11.72	0.52	14 x 40	26 x 26	-11.65	-11.94	0.34
Abs. pose quiver	43 x 43	-12.00	-12.48	0	233 x 253	20 x 20	-11.18	-11.51	0.32	68 x 92	24 x 24	-12.39	-12.60	0.08
Rel. pose 9pt. + 2 rad. dist.	72 x 72	-12.96	-13.11	0.1	165 x 189	24 x 24	-9.81	-10.31	5.14	90 x 117	27 x 27	-9.81	-10.02	3.32
Rel. pose 7pt. + 1 sided rad. dist.	35 x 35	-12.31	-12.53	0.02	51 x 70	19 x 19	-10.57	-10.90	0.30	51 x 70	19 x 19	-10.71	-10.95	0.38

[1] V. Larsson et al. Efficient solvers for minimal problems by syzygy-based reduction. In CVPR, 2017.

[2] V. Larsson et al. Beyond grobner bases: Basis selection for minimal solvers. In CVPR, 2018.

[3] S. Bhayani, Z. Kukelova, and J. Heikkila, "A sparse resultant based method for efficient minimal solvers," in CVPR, 2020.

[4] S. Haner and K. Åström. Absolute pose for cameras under flat refractive interfaces. In CVPR, 2015.

Conclusions

- We studied a hidden variable sparse resultant-based approach for solving minimal camera geometry problems in a stable and efficient way.
- Our proposed approach is an important alternative to the state-of-the-art Grobner basis-based approach for generating efficient minimal solvers.
- Our proposed approach may be useful for solving complex problems where the state-of-the-art solvers have numerical instabilities.

Thank You

For more details, visit our poster session, PS3.11

