Categorizing the feature space for two-class imbalance learning

Rosa Sicilia, Ermanno Cordelli, and Paolo Soda Unit of Computer Systems and Bioinformatics Department of Engineering Università Campus Bio-Medico di Roma

Milan, Italy 10 | 15 January 2021

Index

Index

Imbalanced learning Scenario

Contributions

Materials and Methods

Experimental Results

Conclusions and Future Work

Imbalance learning scenario

Contributions

Materials and Methods

Experimental Results

Conclusions and Future work

Learning under class skew

Learning under class skew

Contributions

Rule-based Space Characterization

Rule-based Space Characterization

Meta-features

 $0 < fr_T < 1$

B

- Fraction of Tomek (fr_T)
- Number of same class samples (n_c)
- Fraction of same class samples (fr_c)

 $fr_T \rightarrow 0$

 $0 < fr_{c} < 1$

 $fr_c \rightarrow 0$

Η

(A/E, B, C/D, F, G, H, I, L)

(A/E, F, G, H)

F

 $n_{C} > \theta N$

A/E

G

Rules

Materials & Competitors

Our Proposal is stable and effective across all datasets

	Metrics					97 ROMA
	$g = \sqrt{a}$	acc+ · acc- mean	IBA = 1	$+ \alpha \cdot (acc$	$c^+ - acc^-) \cdot acc^+ \cdot acc^-$	Index
					, ,)	Imbalanced
	Iman-	Method	g	IBA	0	learning
	Davenport rank analysis	Proposal 🦞	12.58	12.54	X	Scenario
	Imbalanced Baselines	Imbalanced Classifier	4.82	4.3	Statistical significant	
		Bagging	7.8	6.8	difference	Contributions
		AdaBoost	9.1	8.02		
	Cost Sensitive	AdaBoostNC	9.06	7.5		Materials
		AdaC2-I	11.22	11.46	80%	and
	Boosting-based	EUSBoost	8.54	11.14		Methods
		MSMOTEBoost	11.04	10.88		
V		MSMOTEBagging	9.24	9.16	Gmean	Experimenta
	Bagging-based	OverBagging	11.96	10.52		Result
		UnderBagging	9.46	11.78		Conclusion
		llVotes	8.22 7.26 60%	60%	and	
	Ensemble	EasyEnsemble	8.32	9.48		Future Wor
		BalanceCascade	9.36	10.4		
	MEG	MES-random	3.86	3.38	IBA	COSBI
	WILS .	MES-kmeans	1.42	1.38		Computer Systems and Bioinformatics

Index

M	<i>etr</i>	irs

$$g = \sqrt{acc^+ \cdot acc^-}$$

 $IBA = 1 + \alpha \cdot (acc^+ - acc^-) \cdot acc^+ \cdot acc^-$

Index of Balanced Accuracy

Imbalanced learning Scenario

~			
	ntru	huti	onc
		JULI	UIIS
	-		

Materials and Methods

Experimental Results

Conclusions and **Future Work**

	Iman-	Method	g	IBA	
	Davenport rank analysis	Proposal 🦞	12.58	12.54	0
		Imbalanced Classifier	4.82	4.3	
	Imbalanced Baselines	Bagging	7.8	6.8	Simple Bagging and
		AdaBoost	9.1	8.02	Boosting can be more
	Cost Consitivo	AdaBoostNC	9.06	7.5	effective than using a
	Cost Sensitive	AdaC2-I	11.22	11.46	imhalance
		EUSBoost	8.54	11.14	inibulance
	Boosting-based	MSMOTEBoost	11.04	10.88	
		MSMOTEBagging	9.24	9.16	
		OverBagging	11.96	10.52	
	Bagging-based	UnderBagging	9.46	11.78	
		llVotes	8.22	7.26	
		EasyEnsemble	8.32	9.48	
	Ensemble	BalanceCascade	9.36	10.4	
	MES	MES-random	3.86	3.38	
	IVIES	MES-kmeans	1.42	1.38	

Index

Metrics

$$g = \sqrt{acc^+ \cdot acc^-}$$

 $IBA = 1 + \alpha \cdot (acc^+ - acc^-) \cdot acc^+ \cdot acc^-$

Index of Balanced Accuracy

Imbalanced learning Scenario

~			
(on	trik	ודוור	nnc
COIL	ιιι	Juu	ULIS

Materials and Methods

Experimental Results

Conclusions and Future Work

	Iman-	Method	g	IBA	
	Davenport rank analysis	Proposal 🦞	12.58	12.54	0
		Imbalanced Classifier	4.82	4.3	
	Imbalanced Baselines	Bagging	7.8	6.8	Simple Bagging and
		AdaBoost	9.1	8.02	Boosting can be more
		AdaBoostNC	9.06	7.5	effective than using a
	Cost Sensitive	AdaC2-I	11.22	11.46	imbalance
	Boosting-based	EUSBoost	8.54	11.14	mbalance
		MSMOTEBoost	11.04	10.88	
		MSMOTEBagging	9.24	9.16	0
	Bagging-based	OverBagging	11.96	10.52	X
		UnderBagging	9.46	11.78	Proposed method beats
		llVotes	8.22	7.26	the whole category of
	Ensemble	EasyEnsemble	8.32	9.48	MES competitors
		BalanceCascade	9.36	10.4	
	MEC	MES-random	3.86	3.38	
	IVIES	MES-kmeans	1.42	1.38	

UNIVERSITA CAMPUS BIO-MEDICO DI ROMA

Thank you for the attention