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Learning under class skew
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Learning under class skew
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Internal Approaches The Problem

The algorithm is tailored to
imbalanced data exploiting
specific knowledge of both
classifier and application
domain.
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Contributions

A new technique to construct an ensemble of classifiers able to
deal with binary imbalance learning tasks.
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ule-based Space Characterization

How are the samples distributed in
the feature space?
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ule-based Space Characterization
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Building the Training sets

C; training

Each sample assigned
to one of the 8 cases
regardless of the label

RSC

We compute the imbalance ratio among
the samples in the j-th RSC class

The number of classifiers is set according
to the maximum r/

Each training set is composed of

|INV|/n instances sampled with
replacement from N/ and P’ for each of
the 8 RSC classes

The final label is assigned by Majority
Voting
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Materials & Competitors

e 25 databases belonging to real-world problems publicly
e available in the UCI and KEEL repositories.

Imbalanced
learning
Scenario

X3
Imbalanced x 1 5 XZ Contributions

Baselines

MES

Competitors e

Materials
and
Methods

X2

Cost-sensitive XZ Experimental

Ensembles EnEE e Results

learners

x3 x3

DETEREE
in Boosting-based
Ensembles

DEYERIAE
in Bagging-based
Ensembles




Experimental Results
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Experimental Results
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Conclusions and Future Work
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