

ResNet-like Architecture with Low Hardware Requirements

Elena Limonova^{1,2}, Daniil Alfonso³, Dmitry Nikolaev^{2,4}, Vladimir V. Arlazarov^{1,2}

- ¹ FRC CSC RAS, Moscow, Russia
- ² Smart Engines Service LLC, Moscow, Russia
- ³ JSC MCST, Moscow, Russia
- ⁴ Institute for Information Transmission Problems RAS, Moscow, Russia

Fast and resource efficient neural networks are extremely important for edge computing:

- mobile recognition,
- internet of things,
- autonomous vehicles.
- The Bipolar Morphological (BM) Networks:
 - use less computationally intensive addition and maximum instead of multiplication and addition;
 - can be used with any convolutional neural network architecture;
 - BM convolutional layers can be combined with any other layers.

The standard neuron performs the operation:

$$y(\mathbf{x},\mathbf{v},\mathbf{v}_b) = \sigma\left(\sum_{j=1}^N x_j v_j + v_b\right),$$

The bipolar morphological neuron:

$$y_{BM}(\mathbf{x}, \mathbf{v}^+, \mathbf{v}^-, v_b) = \sigma \left(\sum_{\alpha \in \{-,+\}} \sum_{\beta \in \{-,+\}} p^{\alpha} p^{\beta} \exp \max_{\substack{j=1 \\ j=1}}^N (\ln x_j^{\alpha} + v_j^{\beta}) + v_b \right),$$

where $p^+ = 1$, $p^- = -1$, N is an input length, **x** is an input vector, **v**⁺, **v**⁻ are weight vectors, v_b is a bias, and $\sigma(\cdot)$ is a non-linear activation,

$$x_j^+ = \begin{cases} x_j, x_j \ge 0, \\ 0, x_j < 0, \end{cases}$$
 $x_j^- = \begin{cases} -x_j, x_j < 0, \\ 0, x_j \ge 0. \end{cases}$

The BM Convolutional Layer

 $I_{N \times M \times C}$ – input image

 $J_{N \times M \times F}$ – output image

The standard convolutional layer:

$$J = \sigma \left(I * w + \mathbf{b} \right),$$

where * is an image convolution operation.

The BM convolutional layer:

$$J = \sigma \left(\sum_{\alpha \in \{-,+\}} \sum_{\beta \in \{-,+\}} p^{\alpha} p^{\beta} \exp(\ln I^{\alpha} \odot v^{\beta}) + \mathbf{b} \right).$$

where $p^+ = 1$, $p^- = -1$, \odot is a BM convolution operation:

$$(I \odot v)_{n,m,c} = \underset{c=1}{\overset{K}{\max}} \underset{\Delta n=0}{\overset{K-1}{\max}} \underset{\Delta m=0}{\overset{K-1}{\max}} I_{n+\Delta n,m+\Delta m,c} + v_{\Delta k,\Delta m,c,f}$$

Training of BM Network¹

- Train standard network using conventional gradient descent-based methods;
- 2. For each convolutional layer: replace layer with weights $\{w, b\}$ by the BM layer with weights $\{v^+, v^-, b\}$, where:

$$\begin{aligned} v_j^+ &= \begin{cases} \ln |w_j|, \text{ if } w_j > 0\\ -\infty, \text{ otherwise} \end{cases} \\ v_j^- &= \begin{cases} \ln |w_j|, \text{ if } w_j < 0\\ -\infty, \text{ otherwise} \end{cases} \end{aligned}$$

3. Perform additional training of the network after conversion of each layer using the same method as in 1.

¹E. Limonova, D. Matveev, D. Nikolaev, and V. V. Arlazarov, "Bipolar morphological neural networks: convolution without multiplication," ICMV 2019, 11433, 962 – 969, (2020).

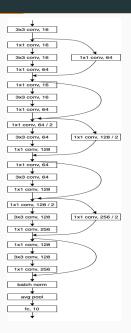
Hardware implementation

- Verilog HDL and Synopsys Design Compiler (65 nm)
- Model single-precision addition, maximum, multiplication
- Approximations for exponent and logarithm

Table 1: The estimate number of gates and latency for arithmetical operations

add 16048 3 max 1464 2 mul 35345 4	Ор	Gates	Latency, clock cycles
	add	16048	3
mul 35345 4	max	1464	2
	mul	35345	4
log 154179 35	log	154179	35
exp 256965 21	exp	256965	21

Hardware complexity for convolutional layers


 Table 2: The approximate gate number and latency ratios for standard and

 BM convolutional layers.

Filters	Channels	Filter Size	Gates.	Latency,
			standard/BM	standard/BM
16	16	1	1.14	0.80
32	32	1	1.64	1.02
64	64	1	2.11	1.18
128	128	1	2.45	1.28
256	256	1	2.67	1,34
512	512	1	2.80	1.37
16	16	3	2.50	1.29
32	32	3	2.70	1.34
64	64	3	2.81	1.37
128	128	3	2.87	1.39
256	256	3	2.9	1.39
512	512	3	2.92	1.40

BM ResNet

- ResNet architecture with 22 convolutional layers;
- standard convolutions were replaced with BM ones;

Gate Number Evaluation

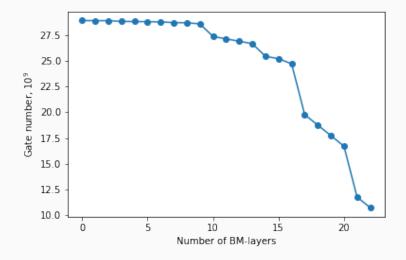
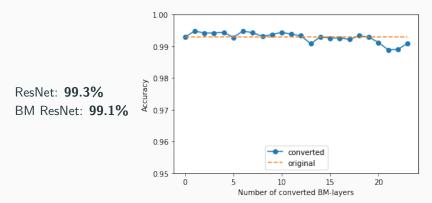
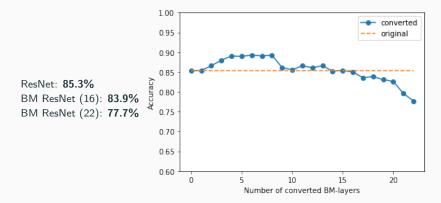



Figure 1: Gate number for convolutional layers of BM ResNet-22.


MNIST

Accuracy after fine-tuning on MNIST

CIFAR-10

In this paper we:

- introduce BM ResNet architecture for image classification:
 - MNIST accuracy 99.1%
 - CIFAR-10 accuracy 83.9%
- present significant benefits of BM networks for ASIC: computationally-intensive BM convolutions
 - require 2.1-2.9 fewer logic gates,
 - have 15-30% lower latency.

- Conduct further research on training of BM networks
- Design ASIC for BM deep neural networks
- Create quantization methods for BM networks