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Introduction

} Stochastic Block Models (SBM) [Holland et al., 1983],
[Nowicki and Snijders, 2001] are random graph models, in
which fitting the parameters to empirical graphs is a
prominent way of discovering communities.

} Typical network structures:
◦ Assortative networks: connections within communities are

more frequent than in between communities.
◦ Disassortative networks: connections within communities

are less frequent than in between communities.
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Introduction

} SBMs are agnostic to assortativity, and can indifferently
model assortative and disassortative structures.
⇒ Especially in sparse graphs (or with lightly assortative

structures), non-assortative solutions with a better
likelihood may substitute the assortative solutions which
were originally sought.

(a) Opt. solution
logL = −2.7616

(b) 2nd best solution
logL = −5.3193

(c) 3rd best solution
logL = −5.9012

Figure 1: The three best solutions in an example case.

2



Introduction

Key contributions

1. We introduce a SBM variant which incorporates
assortativity constraints to represent prior user knowledge;

2. We propose an efficient solution approach based on local
optimization and interior-point algorithms for this model;

3. Through extensive computational experiments, we
identify the regimes in which it contributes to improve
community detection practice.
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Key concepts and Notations

Degree-corrected SBM (DC-SBM)

} In its most fundamental form, the DC-SBM considers N
nodes allocated to K groups.

} The number of edges between a pair of nodes (i, j)
depends only on the groups to which the nodes belong
and their degrees.
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Key concepts and Notations

DC-SBM log-likelihood

log P(A|Ω, Z) =
1
2

K

∑
rs

N

∑
ij

(
Aij ln(ωrs)−

kik j

2m
ωrs

)
zirzjs, (1)

where A is the observed adjacency matrix, ki is the degree of
node i, and m is the total number of edges. Variable Z
represents the memberships, where zir = 1 indicates that node i
is assigned to group r, and Ω is a symmetric K× K edge
probability matrix.
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Key concepts and Notations

Strong assortativity

} All diagonal terms of Ω are greater or equal than all
off-diagonal terms:

ωqq ≥ ωrs ∀ q, r, s ∈ {1, . . . , K}, r 6= s. (2)
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Assortative-Constrained DC-SBM (AC-DC-SBM)

AC-DC-SBM log-likelihood

max
Ω,Z,λ

1
2

K

∑
rs

N

∑
ij

(
Aij log(ωrs)−

kik j

2m
ωrs

)
zirzjs (3a)

s.t. ωqq ≥ λ ∀q ∈ {1, . . . , K} (3b)

ωrs ≤ λ ∀r, s ∈ {1, . . . , K}, r 6= s (3c)

ωrs ≥ 0 ∀r, s ∈ {1, . . . , K}, (3d)

where λ represents a continuous variable acting as a threshold.
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Assortative-Constrained DC-SBM (AC-DC-SBM)

Solution approach

We propose a maximum-likelihood iterative algorithm to
solve (3a – 3d), in which we combine two techniques:

(i) an incremental move evaluation approach, using the
log-likelihood of the unconstrained problem to filter
relocation candidates, and keeping this solution if it
satisfies the assortativity constraints;
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Assortative-Constrained DC-SBM (AC-DC-SBM)

Solution approach

(ii) an interior point solver for the convex subproblem
(4a – 4d), only used if the relocation candidate is not
feasible:

max
Ω,λ

1
2

K

∑
rs
(mrs log(ωrs)− Trsωrs) (4a)

s.t. ωqq ≥ λ ∀q ∈ {1, . . . , K} (4b)

ωrs ≤ λ ∀r, s ∈ {1, . . . , K}, r 6= s (4c)

ωrs ≥ 0 ∀r, s ∈ {1, . . . , K}, (4d)

where mrs represents the number of edges between
communities r and s according to the fixed partition and
Trs = (∑K

t mrt ∑K
t mst)/2m.
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Empirical Studies

Synthetic Networks
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Figure 2: Performance of DC-SBM and AC-DC-SBM on networks
generated from general SBMs. The results are ordered by median

NMI.
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Empirical Studies

Synthetic Networks
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Figure 3: Distribution of the number of assortative communities
found by AC-DC-SBM and DC-SBM on networks with K = 4 groups.
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Empirical Studies

Brain Cortex Networks
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(a) Standard DC-SBM
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(b) AC-DC-SBM
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(c) Modularity
maximization model

Figure 4: The best among 100 network partitions found by different
models in the cats cortex network.
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Conclusions

} In this work, we show that the AC-DC-SBM significantly
outperforms unconstrained community detection methods
in lightly assortative graphs.

} In these circumstances, the classic SBM has a strong
tendency to converge towards non-assortative solutions,
while the modularity maximization model does not
generalize well to graphs in which the number of edges
between groups widely varies.

} For research perspectives, we recommend to investigate
different algorithmic paradigms to improve the solution of
constrained SBMs, and to pursue the study of the
AC-DC-SBM in a wider range of application contexts.
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Source code and datasets

} The algorithms of this paper were implemented in Julia
(version 1.0.5) and the source code is available at:
http://github.com/danielgribel/AssortativeSBM
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