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Motivation

We are concerned with the question: can one find semantic differences
which characterize a classifier’s decision?



What is an Explanation?

To explain we mean to provide textual or visual artifacts that provide
qualitative understanding of the relationship between the data points
and the model prediction. Attempts to clarify such a broad notion of
explanation require the answers to questions such as:

I What were the main factors in a decision?
I Would changing a certain factor have changed the decision?



What do we mean by factors?

Let us denote the feature (data) space by X and the latent linear space
of codes (describing the data) by Z, where usually dim(Z)� dim(X ).

I Decoder Pθ(X|Z)
I Encoder Qφ(Z|X)

LVAE = EPD(X)−EQφ(Z|X) [logpθ(x|z)]+DKL
(
Qφ(Z|X),P (Z)

)
(1)

By training an auto-encoder one can find a latent code which describes a
particular data point. This code will serve as the factors. Our role here is to
provide a connection between these latent codes and the classifier’s decision.
Changes on the code should change the classification decision in a user-defined
way.



Explaining Through Examples: A Plaintiff Scenario

I black-box model b(l,x)
I dataset D = {(li,xi)}
I The black-box model b has assigned the data point x0 to the class
l0.

I a plaintiff presents a complaint as the point x0 should have been
classified as lt.

I Furthermore, assume we are given two additional representative
data points x−T ,xT which have been correctly classified by the
black-box model to the classes l−T , lT

We propose that an explanation why x0 was misclassified can be articulated
through an example set
E = {x−T , . . . ,x0, . . . ,xT }, where xt ∼ Pθ(X|Z = zt).
Here Pθ(X|Z = zt) is a given decoder distribution and the index t runs over
semantic changes.



Stochastic Semantic Processes and Corresponding Paths
In what follows, we first focus on linear latent interpolations, i.e.

z(t) := tz0 +(1− t)zT , (2)

(a) Paths in feature space
with black-box classifier level
sets.

(b) Procedure for sampling paths in
feature space with auto-encoders:
interpolations in latent space and
decoding of images.

Figure: Auto-Encoding Examples Setup: Given a misclassified point x0 and
representatives x−T ,xT , we construct suitable interpolations (stochastic
processes) by means of an Auto-Encoder.



An Approach via Explicit Family of Measures

The collection of measures prescribed by induces a corresponding continuous-time
stochastic process. Moreover, under appropriate reconstruction assumptions on the
auto-encoder mappings Pθ,Qφ, the sample paths are interpolations, that is, start and
terminate respectively at x0,xT almost surely.

dPt0,...,tn (x(t)) :=
∫
Z

∫
Z

(
n∏
i=1

pθ(xi|z(ti))

)
× qφ(z0|x0)qφ(zT |xT )dz0dzT , (3)

In other words, for every pair of points x0 and xT in feature space, and its
corresponding code samples z0 ∼Qφ(Z|X = x0) and zT ∼Qφ(Z|X = xT ), the
decoder Pθ(X|Z) induces a measure over the space of paths
{x(t)|x(0) = x0,x(T ) = xT }.



Principle of Least Semantic Action

Thus, to design auto-encoding mappings Pθ,Qφ accordingly, we propose an
optimization problem of the form

min
θ,φ

SPθ,Qφ [Xt], (4)

where Xt is a stochastic semantic process and SPθ,Qφ is an appropriately
selected functional that extracts certain features of the black-box model b(l,x).
For a given stochastic semantic process Xt, and given initial and final feature
“states" x0 and xT , we introduce the following function, named the model-b
semantic Lagrangian

L : [0,1]×X ×X → R, (t,x0,xT ) 7→ L[Xt,x0,xT ], (5)

which gives rise to the semantic model action:

S[Xt] :=
∫ T

0
L[Xt,x0,xT ]dt. (6)



Objective Function

Our problem, viz. to find encoding mappings Pθ,Qφ which yield
explainable semantic paths with respect to a black-box model, is then a
constrain optimization problem whose total objective function we write
as

L(θ,φ) := LVAE(θ,φ)+λEdP [x(t)]S[x(t)], (7)

where LVAE is given by eq. (1), S[x(t)] corresponds to the Lagrangian
action and λ is an hyper parameter controlling the action’ scale. The
average over the paths is taken with respect to the stochastic paths and
the corresponding measure dP [x(t)], that is, the path integral

EdP [x(t)]S[(x(t))] =
∫
L[x(t),x0,xT ]dP [x(t)] (8)

≈ 1
nK

K∑
k

n∑
t

L[xkt ,x0,xT ], (9)



Lagrangians

I Minimum Hesitant Path
L1(x(t),x0,xT ) :=−(b(lT ,x(t))− b(l0,x(t)))2

I Minimum Transformation Path
L2(x(t),x0,xt) := ‖∇B(lT |x(t))−αẋ(t)‖2

I Fix Lenght Path
L3(x(t),x0,xT ) = ‖ẋ(t)‖g



Other Regularizers

The classifier must change decision in a monotonous fashion. These can
be enforced in a straightforward way by introducing the constraint:

re = d

dt
B(lT |x(t))< 0, ∀t ∈ [0,T ]. (10)

Note that this constraint requires differentiability of x(t) - in contrast,
the notion of explanatory path is not relying on such. We approximate
the differential with finite differences. Our final loss reads:

L(θ,φ) := LVAE(θ,φ)+λEdP [x(t)]S1[x(t)]+λmrm+λere, (11)



Example
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Figure: Probability Paths for the litigation case l0 = 2, lT = 7. Y axis
corresponds to classification probability and x axis corresponds to interpolation
index. Interpolation images for a specific paths are presented below the x axis.



Comparison to other models

Interpolation saliency Map as:

S(x0) = 1/T
∫
δB(x|x0)δxdP [x(t)] =

= 1/T
∫

(B(lT |x(t))−B(l0|x(t)))(x(t)−x0)dP [x(t)] (12)

We obtained approximations of this integral by using a discrete
approximation as performed for the Action.



Evaluation

For a given image x and its corresponding saliency map s, the masking
is accomplished by changing the pixels of x which have a saliency value
bigger than the τ percentile set of values of the map s itself. We then
quantify the change in the odds probability, per number of pixel
changed (in percentage values)

logP (l0|x) = logP (l0|x)− log(1−P (l0|x)), (13)

In short, a good saliency map will achieve the biggest change in the log
odds, with the least amount of pixel changed.



Relevance Statistic

Table: Relevance Statistics for Different Models and Comparison Saliency
Maps. In parenthesis we include the value of the λ regularizers

index max min mean random

VAE DL (1.0) FL (5.0) 26.890537 13.248348 13.780094 24.259376
VAE FL (5.0) 17.528036 12.430488 13.249453 16.323000
VAE MTL (5.0) 22.425894 1.593850 17.865745 18.878264
VAE DL (1.0) MTL (5.0) 41.968799 3.516279 25.474598 41.076384
WAE FL (5.0) 1.348628 7.626165 4.758138 2.598853
WAE DL (1.0) FL (5.0) 28.650618 19.274864 13.260943 24.217626
WAE MTL (5.0) 33.308588 1.721710 10.395801 27.469413
WAE DL (1.0) MTL (5.0) 21.113389 25.378131 6.343344 16.944631
vanilla 18.799356 12.129845 12.124648 18.617377
smooth 2.626274 16.802856 10.184854 3.966701
guided 25.264783 4.653241 2.523255 15.527908
mask 4.276590 0.248701 3.414551 3.244211



Conclusion

I In the present work we provide a novel framework to explain
black-box classifiers through examples obtained from deep
generative models.

I We train the auto-encoder, not only by guaranteeing reconstruction
quality, but by imposing conditions on its interpolations.

I Beyond the specific problem of generating explanatory examples,
our work formalizes the notion of a stochastic process induced in
feature space by latent code interpolations, as well as quantitative
characterization of the interpolation through the semantic
Lagrangian’s and actions.


