ON MORPHOLOGICAL HIERARCHIES FOR IMAGE SEQUENCES

Caglayan Tuna, Alain Giros, François Merciol, Sébastien Lefèvre

UBS

CNES

UBS

MOTIVATION

 Morphological hierarchies are efficient tools to process single frame remote sensing images

In our previous work, we have proposed different hierarchical representation strategies for image sequences¹

 Our goal is to select the most relevant and efficient hierarchical representation for subsequent studies.

1-Tuna, Caglayan, et al. "Component trees for image sequences and streams." *Pattern Receiption Letters* 129 (2020): 255-262.

					1
_	0	0	0	0	I
3	3	3	3	3	
2	2	2	2	3	
L	3	4	2	3	
2	2	2	2	3	
3	3	3	3	3	$I(x) \ge 3$
)	0	3	3	3	
3	3	3	3	3	

TREE FOR AN IMAGE

• Tree representations can be used to extract object based feature from an image without needing prior information

 $I(x) \ge 3$

 $I(x) \ge 4$

T = (V, E)

• Tree consist of set of nodes and set of edges

3 | 3 |

 $V = \cup (C_{\lambda})$

• Set of nodes are the union of connected components/nodes

TREE FOR IMAGE SEQUENCES

1-Spatial Hierarchy

- Ordering
- Projection

2-Temporal Hierarchy

• Building tree for each date

3-Spatio-temporal HierarchyBuilding one tree from all

• Space-time tree is built using temporal connectivity

SPACE-TIME

TREE

6 connectivity

Another options is continuous connectivity (instead of 3x3x3, 3x3xn)

Thus, spatio-temporal connected components are created

$$C_{\lambda,t} = \cup (C_{\lambda,1}, C_{\lambda,2}, \dots, C_{\lambda,n})$$

• These connected components or nodes includes pixel from different time stamps

PROJECTION

Three strategies

- I. Spatial h.: Spatial domain
- 2. Temporal h.: Spatial domain
- 3. Spatio-temporal: Spatio-temporal

Tree projection from space-time tree to make them comparable

- . Spatial projection
- 2. Temporal projection
- Comparison can be made between temporally projected trees and temporal hierarchy trees or spatially projected trees or spatial hierarchy trees

Space time tree example with 3 images

	\mathcal{T}_t		$ $ \mathcal{T}^t $ $		\mathcal{T}'^t	
	Max	Min	Max	Min	Max	Min
t = 1	13640	14274	6377	5874	4917	3481
t=2	13577	14231	4471	4523	3688	4007
t = 3	14268	14002	2418	5726	2099	2924
t = 4	13883	14178	5111	3067	3469	2626
t = 5	12495	11592	6726	2966	6178	2862
t = 6	15176	13943	4106	6789	1614	5838
avg.	13839	13703	4818	4824	3631	3623
std.	804	951	1445	1438	1558	1090
total	83039	82220	28909	28945	21789	21738

Amount of nodes: Complexity analysis

			\mathcal{T}^t		\mathcal{T}'^t	
	Max	Min	Max	Min	Max	Min
t = 1	57.2	93.5	23.8	10.4	6.4	5.8
t=2	41.7	82.2	4.4	12.8	3.2	9.9
t = 3	54.7	86.5	2.1	10.9	1.00	4.4
t = 4	58.6	86.0	12.8	4.5	5.2	2.42
t = 5	66.9	70.2	25.6	1.2	23.1	1.00
t = 6	70.6	98.4	7.2	20.6	1.3	14.1

EXPERIMENTS

	Max	Min
\mathcal{T}_{ς}	500.00	1000.00
\mathcal{T}^{ς}	15.00	3.00
$\mathcal{T}^{\prime \varsigma}$	1.00	1.00

Dasgupta's Cost (2016) is adapted

(a) *I*₄

(d) $\zeta^{20}(\mathcal{T}'^t)$ (b) $\zeta^{20}(\mathcal{T}_t)$ (c) $\zeta^{20}(\mathcal{T}^t)$ (e) *I* – (*b*) (f) I - (c)(g) I - (d)

Filtering result with TH strategy and projected trees with same threshold

EXPERIMENTS

CONCLUSION

- We have proposed projection methods for space-time trees in order to make them comparable with the trees obtained with spatial and temporal hierarchy
- We showed that space-time tree is more preferable compared to other strategies
- Among future works, we aim to explore capability of trees with continuous connectivity for real remote sensing based applications such as land-cover mapping, pattern recognition and change detection.