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Introduction to Consistency-based approaches

Consistency-based approaches for semi-supervised learning (SSL)
* Encourage consistent probability predictions between a teacher-student pair for the same
data under perturbations
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Figure 1. General framework for consistency-based approaches 5



NC STATE
UNIVERSITY

Research Motivation

Issue with consistency-based methods: Confirmation bias

« Caused by inaccurate learning targets generated by the teacher model

« It would trap some unlabeled data samples in low-density regions or enforce them into high-
density regions of incorrect class in feature space.
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Method-ldea illustration

Clustering assumption: Samples are likely to have the same class label if there is a path connecting
them passing through regions of high density only.

Local consistency assumption: Nearby samples are likely to have the same label. Samples on the
same structure (typically, a manifold) are likely to have the same label.

Propose a local clustering method that clusters data points locally by minimizing the pairwise
distance between neighboring points in feature space
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Figure 3. An illustration of the intuition behind Local clustering in feature space. Each
point represents the intermediate learned representation of one data sample
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Related Work

Several types of consistency-based methods:
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Temporal Ensemblingl?!
« The EMA of probability predictions of the student model as the teacher model’s predictions

Virtual Adversarial Training (VAT)?!

« Impose adversarial perturbations to either the inputs or intermediate feature vectors that would
maximize the difference in predictions between the student model and teacher model.

Mean Teacherll
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Note: the citation-style references are presented in the end of the slides 5
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Local clustering:

 Build on top of Mean Teacher

 |dea is to pull those misclassified unlabeled data to the high-density regions of their
correct class in feature space

« Can be treated as a new regularizer to Mean Teacher
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Local clustering:
« At each training iteration, build a weighted graph in feature space from a sub-
batch of labeled data and a sub-batch of unlabeled data

The local clustering loss: The edge weight function
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Results — Datasets

We conduct experiments on two widely used semi-supervised image classification
benchmark datasets: SVHN and CIFAR-10

Dataset Number of training Number of test Number of action
images images classes
SVHN 73,257 26,032 10
CIFAR-10 50,000 10,000 10

Table 8: Video action recognition datasets used for this task
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Figure 4. Sample images in SVHN (left) and CIFAR-10(right)
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Results

Compares with state-of-the-art methods on SVHN and CIFAR-10
* Train the models on SVHN training images with 500 and 1,000 randomly labeled

« Train the models on CIFAR-10 training images with 2,000 and 4,000 randomly

labeled samples

« Test error rate percentage is reported as evaluation metric

Method SVHN CIFAR-10
n; = 500 n; = 1000 n; = 2,000 n; = 4,000

FM-GAN (Salimans et al. 2016) 18.44 + 4.80 8.11 +1.30 19.61 +2.09 18.63 + 2.32
Bad GAN (Dai et al. 2017) - 7.42 £ 0.65 - 14.41 £+ 0.30
Local GAN (Qi et al. 2018) 5.48 +0.29 4.73 +0.29 - 14.23 + 0.27
IT model (Laine and Aila 2016) 6.65 + 0.53 4.82 +0.17 - 12.36 + 0.31
TempEns (Laine and Aila 2016) 5.12 +£0.13 442 +0.16 - 12.16 = 0.31
Mean Teacher (Tarvainen and Valpola 2017)|| 4.18 £+ 0.27 3.95 +£0.19 15.73 +0.31 12.31 + 0.28
VAdD (Park et al. 2018) - 4.16 £+ 0.08 - 11.32 £ 0.11
VAT + EntMin (Miyato et al. 2018) - 3.86 = 0.11 - 10.55 £ 0.05
TempEns + SNTG (Luo et al. 2018) 4.46 + 0.26 3.98 +0.21 13.64 £+ 0.32 1093 + 0.14
MT + SNTG (Luo et al. 2018) 3.99 +0.24 3.86 &+ 0.27 - -

MTH* 391 +0.11 3.80 + 0.09 12.37 + 0.29 9.93 +0.16
MT + LC (ours) 3.54 + 0.17 3.35 + 0.09 11.56 + 0.31 9.26 + 0.16

Table 1: Error rate percentage comparison with the sota methods on SVHN and CIFAR-10
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Results

Visualize the test error as a function of training epoch on SVHN and CIFAR-10
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Figure 5. Smoothed test error curves of MT and MT+LC on SVHN (left) and
CIFAR-10 (right)
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Results

Ablation Study:

« Study the effect of cut-off threshold €
« Study the effect of LC loss weight A,
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Figure 6. The test errors of MT + LC with different cut-off thresholds (left) and loss
weights(right)
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Visualization

Visual comparison of MT and MT + LC on intermediate feature representations
on test data

Figure 7. t-SNE visualization of CIFAR-10 test data features obtained by MT (left) 12
and MT + LC (right)
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Summary & future work

* We developed a novel local clustering method to address the confirmation
bias issues existing in Mean Teacher method
* Future work:

» Design adaptive cut-off threshold

» Use a pair-wise metric learning method to determine the pairwise similarity
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