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Introduction

Aim: Indoor Localisation based on commodity WiFi equipment.
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Scheme: Neural network, Supervised Iearning Figure 1: Indication of CSI tuples within a transmission time frame

Difficulties: Feature extraction and network architectures under complex multipath effect.
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Experiments

Experimental area: Indoor office (6.5m * 2.5m) ~ e R
i3 '
Target tag
CSl rate: 500Hz ‘L ( )@’) AU
-
Label collection: Opti-track system composed of cameras ﬁ
< 6.5m

Access point: 3

Target tag: curvilinear motions

Camera 5

Camera 6-8 &

Dataset: is collected when the target object was carried
by a walking human subject to mimic a severe shadowing
environment and was continuously moved around in the test

area. Figure 3: Real office environment
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NN architectures

1. Shallow neural network (SNN)
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Figure 4: Process diagram of signal processing and training
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NN architectures

2. Convolutional neural network (CNN)

CSI Data Collection

!

1. Amplitude Denoise
2. Phase Recovery

25 Packs as one sample

H%H#

Optical Motion Tracking

¥

Time Synchronization

v

Training data - Location pairs

( 1
i Training stage !
N = CNN
A4
Deployment data » Model

Figure 6: Process diagram of signal processing and training
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NN architectures

3. Long-short term memory (LSTM)

Data processing is same as in CNN.
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Results

1. Performance Evaluation
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Figure 9: (a) Inference time comparison (1000 samples); (b) Accuracy comparison between the SNN, CNN and LSTM models under
different AP combinations; (c) Accuracy comparison between the two CNN models under different AP combinations

Table 1: Comparison of Localisation mean errors for different methods (cross-validation)

Farnham [20]  SNN CNN LST™M
wé University of Mean(m) 0.75 0.5441 05663  0.5982
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Results

2. Special Use-case: Non-Constant Velocity Scenario

The motion characteristics contained a pattern sequence of linear-fast, stationary and linear-slow for two minutes.
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Figure 10: The localisation error CDF of the NN models in the
special scenario. The LSTM model is similar to the CNN in
accuracy and better than the SNN
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Results

3. Data Arrangement Ablation Study
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Figure 11: Ablation study for various training data (blue) and
feature (red) sizes
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Conclusions

Three feasible models for WiFi indoor localisation.

The process of handcrafted localisation features extraction in SNN is time consuming.

CNN and LSTM can realise localisation via CSI raw data directly, but the LSTM does not present
extra advantages on increase localisation accuracy.

In a nonconstant speed motion, the CNN shows better generalisation ability.
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