

Tensorized Feature Spaces for Feature Explosion

Ravdeep S Pasricha, Pravallika Devineni, Evangelos E. Papalexakis and Ramakrishnan Kannan

25th International Conference on Pattern Recognition

10-15 January, 2021

1. Introduction

- 2. Problem Formulation
- 3. Proposed Method
- 4. Experiments and Results
- 5. Conclusions

Hyperspectral Images(HSI)

- Images with hundreds of spectral bands at each pixel.
- Used in aerial land surveys with aircrafts or satellites.
- Different objects reflect different wavelengths of the spectral bands.

Example of 3-D Tensor:

HSI(2)

- Each pixel has different features corresponding to spectral bands.
- Usually two type of tasks:
 - Pixel Classification task Where each pixel belongs to one class.
 - Unmixing task Composed of multiple materials.

Example of 3-D Tensor:

Problem:

Generate a feature space for a classifier such that pixels in the image are classified into one of the given classes.

- 1. Introduction
- 2. Problem Formulation
- 3. Proposed Method
- 4. Experiments and Results
- 5. Conclusions

Preliminary Definitions

Kronecker Product of two matrices such that:

$$\mathbf{A} \in \mathbb{R}^{I imes J} \quad \mathbf{B} \in \mathbb{R}^{M imes N}$$
 $\mathbf{A} \otimes \mathbf{B} = egin{bmatrix} a_{11}\mathbf{B} & a_{12}\mathbf{B} \dots a_{1J}\mathbf{B} \ a_{21}\mathbf{B} & a_{22}\mathbf{B} \dots a_{2J}\mathbf{B} \ dots & dots & dots \ a_{I1}\mathbf{B} & a_{I2}\mathbf{B} \dots a_{IJ}\mathbf{B} \end{bmatrix} \qquad \mathbf{A} \otimes \mathbf{B} \in \mathbb{R}^{IM imes JN}$

$$\mathbf{A} \otimes \mathbf{B} \in \mathbb{R}^{IM \times JN}$$

Preliminary Definitions (2)

 Khatri-Rao Product(KRP) of two matrices is a column-wise Kronecker product.

$$\mathbf{A} \in \mathbb{R}^{I imes R}$$

$$\mathbf{B} \in \mathbb{R}^{J imes R}$$

$$\mathbf{A} \odot \mathbf{B} = [\mathbf{a_1} \otimes \mathbf{b_1} \quad \mathbf{a_2} \otimes \mathbf{b_2} \quad \dots \quad \mathbf{a_R} \otimes \mathbf{b_R}]$$

$$\mathbf{A}\odot\mathbf{B}\in\mathbb{R}^{IJ imes R}$$

Preliminary Definitions (3)

 The CP decomposition of a 3-mode tensor of size I × J × K for a particular rank R is given by sum of R rank-one tensors:

$$\mathbf{X}pprox \sum_{r=1}^{R}\mathbf{A}\left(:,r
ight)\circ\mathbf{B}\left(:,r
ight)\circ\mathbf{C}\left(:,r
ight)$$

A, **B** and **C** are the factor matrices.

 $A: I \times R$, $B: J \times R$ and $C: K \times R$

- denotes the three way outer product.
- Tensor Completion is the task of predicting missing values in a tensor using tensor decomposition.

Problem Definition

Given:

- X : a 3-D HSI tensor of size I × J × K
- Y: a label matrix of size I × J and
- R: Tensor rank

Generate a feature space for a classifier such that pixels in the image are classified into one of the given classes.

- 1. Introduction
- 2. Problem Formulation
- 3. Proposed Method
- 4. Experiments and Results
- 5. Conclusions

Proposed Method: ORION

- Intuition: Map the input space to higher dimensional space.
- CP decomposition of \underline{X} of size $I \times J \times K$ yields 3 factor matrices.
 - \circ **A**: $I \times R$, **B**: $J \times R$ and **C**: $K \times R$
- Tensorized feature space: Khatri-Rao Product of matrices A and B

$$\mathbf{A}\odot\mathbf{B}\in\mathbb{R}^{IJ imes R}$$

ullet Mode-3 matricization of tensor: $\mathbb{R}^{IJ imes K}$ \longleftarrow Matrix Bounded by K

Example of mode-1 matricization

• Tensor Rank for CP is bounded by min(IJ, JK, KI).

Proposed Method: ORION

- 1. Introduction
- 2. Problem Formulation
- 3. Proposed Method
- 4. Experiments and Results
- 5. Conclusions

Experimental Evaluation

- Implemented Using Matlab and Python
 - Tensor Toolbox by Sandia Labs¹ for tensor completion task.
 - Scikit-Learn for classification task.
 - Tensorly² for tensor operations in Python.

Datasets:

- Indian Pines
- University of Pavia
- Salinas
- Salinas-A (Subscene of Salinas dataset)

¹ http://www.sandia.gov/~tgkolda/TensorToolbox/index-2.6.html

² http://tensorly.org/stable/index.html

Experimental Evaluation(2)

- Baseline Methods:
 - Support Vector Machines(SVMs):
 - Linear Kernel
 - Polynomial Kernel
 - RBF Kernel
 - Multi-Layer Perceptron
- Evaluation Metrics:
 - Classification Accuracy
 - F1 Score

Classification Accuracy (80-20)

TABLE II
CLASSIFICATION ACCURACY OF ALL THE METHODS FOR 80-20 SPLIT

	Indian Pines	Pavia University	Salinas-A	Salinas
Linear SVM	$0.8708 \pm\ 0.0035$	0.9176 ± 0.0017	0.9986 ± 0.0016	0.9339 ± 0.0014
Polynomial SVM	0.8979 ± 0.0054	0.9481 ± 0.0015	0.9978 ± 0.0015	0.9463 ± 0.0014
RBF SVM	0.9178 ± 0.0050	0.9622 ± 0.0020	0.9985 ± 0.0017	0.9620 ± 0.0024
MLP	$0.9182 \pm\ 0.0057$	0.9635 ± 0.0041	0.9982 ± 0.0010	0.9629 ± 0.0045
ORION -1000	0.9916 ± 0.0022	0.9502 ± 0.0032	0.9690 ± 0.0067	0.9927 ± 0.0010
Orion -2000	$0.9949\pm\ 0.0022$	0.9828 ± 0.0030	0.9680 ± 0.0063	0.9954 ± 0.0006

Classification Accuracy (30-70)

TABLE III
CLASSIFICATION ACCURACY OF ALL THE METHODS FOR 30-70 SPLIT

	Indian Pines	Pavia University	Salinas-A	Salinas
Linear SVM	0.8371 ± 0.0034	0.9134 ± 0.0015	0.9965 ± 0.0010	0.9322 ± 0.0007
Polynomial SVM	0.8511 ± 0.0042	0.9367 ± 0.0010	0.9941 ± 0.0017	0.9406 ± 0.0009
RBF SVM	0.8739 ± 0.0041	0.9546 ± 0.0007	0.9966 ± 0.0011	0.9515 ± 0.0012
MLP	0.8693 ± 0.0098	0.9556 ± 0.0029	0.9931 ± 0.0029	0.9475 ± 0.0041
ORION -1000	0.9725 ± 0.0032	0.9119 ± 0.0015	0.8607 ± 0.0146	0.9662 ± 0.0013
Orion -2000	0.9806 ± 0.0031	0.9544 ± 0.0021	0.8982 ± 0.0073	0.9832 ± 0.0013

Discussion about Salinas and Salinas-A

Potentially has better trilinear structure

Linearly Separable

Classification Accuracy Vs Rank

- 1. Introduction
- 2. Problem Formulation
- 3. Proposed Method
- 4. Experiments and Results

5. Conclusions

Conclusion

- Introduced tensorized feature space based on factors generated from tensor decomposition.
- Demonstrated effectiveness of our methods against traditional linear and non-linear supervised learning methods.

Our code is available at https://github.com/ravdeep003/ORION

Thank You!

How to reach me:

Email: <u>rpasr001@ucr.edu</u>

LinkedIn: <u>linkedin.com/in/ravdeep003</u>

Website: <u>www.ravdeep.in</u>

Code: https://github.com/ravdeep003/ORION

MAD Lab @ UCR

Supported by:

OAC-1808591