Tensorized Feature Spaces for Feature Explosion Ravdeep S Pasricha, Pravallika Devineni, Evangelos E. Papalexakis and Ramakrishnan Kannan 25th International Conference on Pattern Recognition 10-15 January, 2021 #### 1. Introduction - 2. Problem Formulation - 3. Proposed Method - 4. Experiments and Results - 5. Conclusions # Hyperspectral Images(HSI) - Images with hundreds of spectral bands at each pixel. - Used in aerial land surveys with aircrafts or satellites. - Different objects reflect different wavelengths of the spectral bands. Example of 3-D Tensor: # **HSI(2)** - Each pixel has different features corresponding to spectral bands. - Usually two type of tasks: - Pixel Classification task Where each pixel belongs to one class. - Unmixing task Composed of multiple materials. Example of 3-D Tensor: #### Problem: Generate a feature space for a classifier such that pixels in the image are classified into one of the given classes. - 1. Introduction - 2. Problem Formulation - 3. Proposed Method - 4. Experiments and Results - 5. Conclusions #### **Preliminary Definitions** Kronecker Product of two matrices such that: $$\mathbf{A} \in \mathbb{R}^{I imes J} \quad \mathbf{B} \in \mathbb{R}^{M imes N}$$ $\mathbf{A} \otimes \mathbf{B} = egin{bmatrix} a_{11}\mathbf{B} & a_{12}\mathbf{B} \dots a_{1J}\mathbf{B} \ a_{21}\mathbf{B} & a_{22}\mathbf{B} \dots a_{2J}\mathbf{B} \ dots & dots & dots \ a_{I1}\mathbf{B} & a_{I2}\mathbf{B} \dots a_{IJ}\mathbf{B} \end{bmatrix} \qquad \mathbf{A} \otimes \mathbf{B} \in \mathbb{R}^{IM imes JN}$ $$\mathbf{A} \otimes \mathbf{B} \in \mathbb{R}^{IM \times JN}$$ # Preliminary Definitions (2) Khatri-Rao Product(KRP) of two matrices is a column-wise Kronecker product. $$\mathbf{A} \in \mathbb{R}^{I imes R}$$ $$\mathbf{B} \in \mathbb{R}^{J imes R}$$ $$\mathbf{A} \odot \mathbf{B} = [\mathbf{a_1} \otimes \mathbf{b_1} \quad \mathbf{a_2} \otimes \mathbf{b_2} \quad \dots \quad \mathbf{a_R} \otimes \mathbf{b_R}]$$ $$\mathbf{A}\odot\mathbf{B}\in\mathbb{R}^{IJ imes R}$$ # Preliminary Definitions (3) The CP decomposition of a 3-mode tensor of size I × J × K for a particular rank R is given by sum of R rank-one tensors: $$\mathbf{X}pprox \sum_{r=1}^{R}\mathbf{A}\left(:,r ight)\circ\mathbf{B}\left(:,r ight)\circ\mathbf{C}\left(:,r ight)$$ **A**, **B** and **C** are the factor matrices. $A: I \times R$, $B: J \times R$ and $C: K \times R$ - denotes the three way outer product. - Tensor Completion is the task of predicting missing values in a tensor using tensor decomposition. #### **Problem Definition** #### Given: - X : a 3-D HSI tensor of size I × J × K - Y: a label matrix of size I × J and - R: Tensor rank Generate a feature space for a classifier such that pixels in the image are classified into one of the given classes. - 1. Introduction - 2. Problem Formulation - 3. Proposed Method - 4. Experiments and Results - 5. Conclusions ## Proposed Method: ORION - Intuition: Map the input space to higher dimensional space. - CP decomposition of \underline{X} of size $I \times J \times K$ yields 3 factor matrices. - \circ **A**: $I \times R$, **B**: $J \times R$ and **C**: $K \times R$ - Tensorized feature space: Khatri-Rao Product of matrices A and B $$\mathbf{A}\odot\mathbf{B}\in\mathbb{R}^{IJ imes R}$$ ullet Mode-3 matricization of tensor: $\mathbb{R}^{IJ imes K}$ \longleftarrow Matrix Bounded by K **Example of mode-1 matricization** • Tensor Rank for CP is bounded by min(IJ, JK, KI). #### Proposed Method: ORION - 1. Introduction - 2. Problem Formulation - 3. Proposed Method - 4. Experiments and Results - 5. Conclusions ## **Experimental Evaluation** - Implemented Using Matlab and Python - Tensor Toolbox by Sandia Labs¹ for tensor completion task. - Scikit-Learn for classification task. - Tensorly² for tensor operations in Python. #### Datasets: - Indian Pines - University of Pavia - Salinas - Salinas-A (Subscene of Salinas dataset) ¹ http://www.sandia.gov/~tgkolda/TensorToolbox/index-2.6.html ² http://tensorly.org/stable/index.html # Experimental Evaluation(2) - Baseline Methods: - Support Vector Machines(SVMs): - Linear Kernel - Polynomial Kernel - RBF Kernel - Multi-Layer Perceptron - Evaluation Metrics: - Classification Accuracy - F1 Score # Classification Accuracy (80-20) TABLE II CLASSIFICATION ACCURACY OF ALL THE METHODS FOR 80-20 SPLIT | | Indian Pines | Pavia University | Salinas-A | Salinas | |----------------|----------------------|---------------------|---------------------|---------------------| | Linear SVM | $0.8708 \pm\ 0.0035$ | 0.9176 ± 0.0017 | 0.9986 ± 0.0016 | 0.9339 ± 0.0014 | | Polynomial SVM | 0.8979 ± 0.0054 | 0.9481 ± 0.0015 | 0.9978 ± 0.0015 | 0.9463 ± 0.0014 | | RBF SVM | 0.9178 ± 0.0050 | 0.9622 ± 0.0020 | 0.9985 ± 0.0017 | 0.9620 ± 0.0024 | | MLP | $0.9182 \pm\ 0.0057$ | 0.9635 ± 0.0041 | 0.9982 ± 0.0010 | 0.9629 ± 0.0045 | | ORION -1000 | 0.9916 ± 0.0022 | 0.9502 ± 0.0032 | 0.9690 ± 0.0067 | 0.9927 ± 0.0010 | | Orion -2000 | $0.9949\pm\ 0.0022$ | 0.9828 ± 0.0030 | 0.9680 ± 0.0063 | 0.9954 ± 0.0006 | # Classification Accuracy (30-70) TABLE III CLASSIFICATION ACCURACY OF ALL THE METHODS FOR 30-70 SPLIT | | Indian Pines | Pavia University | Salinas-A | Salinas | |----------------|---------------------|---------------------|---------------------|---------------------| | Linear SVM | 0.8371 ± 0.0034 | 0.9134 ± 0.0015 | 0.9965 ± 0.0010 | 0.9322 ± 0.0007 | | Polynomial SVM | 0.8511 ± 0.0042 | 0.9367 ± 0.0010 | 0.9941 ± 0.0017 | 0.9406 ± 0.0009 | | RBF SVM | 0.8739 ± 0.0041 | 0.9546 ± 0.0007 | 0.9966 ± 0.0011 | 0.9515 ± 0.0012 | | MLP | 0.8693 ± 0.0098 | 0.9556 ± 0.0029 | 0.9931 ± 0.0029 | 0.9475 ± 0.0041 | | ORION -1000 | 0.9725 ± 0.0032 | 0.9119 ± 0.0015 | 0.8607 ± 0.0146 | 0.9662 ± 0.0013 | | Orion -2000 | 0.9806 ± 0.0031 | 0.9544 ± 0.0021 | 0.8982 ± 0.0073 | 0.9832 ± 0.0013 | #### Discussion about Salinas and Salinas-A Potentially has better trilinear structure Linearly Separable # Classification Accuracy Vs Rank - 1. Introduction - 2. Problem Formulation - 3. Proposed Method - 4. Experiments and Results #### 5. Conclusions #### Conclusion - Introduced tensorized feature space based on factors generated from tensor decomposition. - Demonstrated effectiveness of our methods against traditional linear and non-linear supervised learning methods. Our code is available at https://github.com/ravdeep003/ORION #### Thank You! #### How to reach me: Email: <u>rpasr001@ucr.edu</u> LinkedIn: <u>linkedin.com/in/ravdeep003</u> Website: <u>www.ravdeep.in</u> Code: https://github.com/ravdeep003/ORION ## MAD Lab @ UCR #### Supported by: OAC-1808591