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Motivation

Many complex dynamical signals naturally feature an inherent
compositional form, in the sense that their data generating process can
be decomposed into different dynamical modes.



Switching Dynamical Systems

In Switching Dynamical Systems, one assumes that at each time step t
there is a corresponding categorical latent state zt taking one of K
different values and following the Markovian transitions

zt+1 |zt ∼ πzt , (1)

ht+1 = Azt+1ht+bzt+1 +vt, vt ∼N (0,Qzt+1), (2)

xt = Cztht+dzt +wt, wt ∼N (0,Szt+1), (3)



Recurrent Switching Linear Dynamical Systems

An important remark is that each categorical state zt+1 depends only
on the previous one zt. This seems to limit the influence of the
continuous latent variable ht on the discrete switch — An augmented
model (recurrent SLDS or rSLDS) which makes use of the following
generation scheme for zt

zt+1 |zt,ht,{Rk,rk} ∼ πSB(νt+1), (4)

with νt+1 = Rztht+rzt . Here πSB is a certain stick-breaking
distribution, Rk ∈ RK−1×p captures the recurrent dependencies
between zt and ht, and rk ∈ RK−1 models the Markovian transitions
between consecutive states zt+1 and zt.



Recurrent Neural Networks

Given a sequence x = (x1,x2, . . . , xT ), RNNs process each xt through
the update of a hidden state ht at each time step t ∈ (1, . . . , T ). The
update is implemented via a deterministic non-linear transition function
fθ thus

ht = fθ (ht−1,xt) , (5)

where ht ∈ Rp, xt ∈ Rd and θ is the parameter set of f . Given the set
of hidden states ht one can model the observed sequence by
approximating its joint probability distribution function as

p(x1,x2, ..., xT ) =
T∏
t=1

p(xt|x<t), p(xt|x<t) = gϕ(ht−1), (6)

where g with parameter set ϕ maps ht to a probability distribution over
outputs, and where x<t denotes the dependence on the history.



Variational Inference

We define an approximate posterior distribution q(z) which is tractable.
This distribution is chosen to approximate the unknown true posterior
distribution - by minimizing e.g. the Kullback-Leibler divergence
KL [q(z)||p(z|x)]. The posterior is not explicitly available, we maximize
the lower bound to the model’s evidence:

L[q] = Eq(z) [logp(x|z)]−KL [q(z)||p(z)] , (7)

where the first term is the averaged log likelihood of the model over the
approximate posterior distribution and drives the learning of the data,
whereas the second term plays the role of a regularizer.



Neural Variational Switching Dynamical Systems

Generative Model
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Neural Variational Switching Dynamical Systems

Inference

MLP

Attention
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Mode regularization

H[ρ] =−EpD(x)

K∑
k=1

ρ̃k log ρ̃k, (9)

L′[q] = L[q]+λeH[ρ] (10)



An expectation-maximization solution to NVSDS
(NVSDS-EM)

One can directly optimize by noticing L[q] is nothing but the negative
Kullback-Leibler divergence between q(z) and p(x,z). An optimal lower bound
is then found by minimizing this divergence. Such a minimum happens only for
logq(z) = logp(x,z)+ const.
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t∑K
k ρk

t
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, ρk
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t |xk
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Lorenz Attracttor
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Dissect ion Generated t rajectory

It is defined by a coupled system of non-linear equations

dx
dt = σ(y−x),

dy
dt = x(ρ−z)−y, dz

dt = xy−βz.
(12)



Switching Oscillatory Dynamics
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It is defined as:

f(t) =H(cos(ωst)< 0)cos(ω1t)+ [1−H(cos(ωst)< 0)]cos(ω2t) (13)

Where H is the Heaviside function and ωs < ω2 < ω1



Handwritting

Figure: Dissection of a handwriting signal for the NVSDS model for different
sequences. The lower row shows particular letters from the complete sequences
for easier comparison.



Conclusion

I In the present work we have provided a neural network solution to
the problem of switching dynamical systems (SDS).

I We build upon variational approximate inference for the categorical
variables indexing of the dynamical modes.

I We incorporate an attention mechanism for the switching
procedure.

I We incorporate an entropy regularizer to improve the detection of
the modes.
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