Self-Supervised Learning with Graph Neural Networks for Region of Interest Retrieval in Histopathology

Yiğit Özen¹ Selim Aksoy¹ Kemal Kösemehmetoğlu² Sevgen Önder² Ayşegül Üner²

> ¹Department of Computer Engineering, Bilkent University, Ankara, Turkey ²Department of Pathology, Hacettepe University, Ankara, Turkey

Introduction

- Advances in slide scanning technologies have enabled the whole diagnostic process of cancer to be done in digital form.
- ► Pathological image analysis systems have a great potential in aiding this process.
- Content-based histopathology image retrieval systems can provide auxiliary information to pathologists by identifying regions that have similar content.

Challenges

- ► Effective retrieval requires effective feature representations.
- ► Learning representations through deep neural networks requires large amount of labeled data.
- Data annotation is time-consuming and data sharing is difficult in histopathology.
- Diagnostically relevant regions of interest (ROI) have variable size and shape.
- ▶ Patch-based methods cannot exploit contextual information.

Challenges

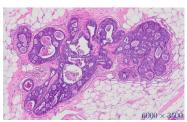


Figure 1: ROIs with varying shapes and sizes.

Table 1: ROI size statistics in number of pixels at $10 \times$ magnification.

	Benign	Atypia	In Situ	Invasive
Average	1308K	473K	2815K	12568K
Standard deviation	2510K	711K	4948K	17822K
Max-min ratio	977.2	210.8	941.1	762.5

- Model ROIs as graphs with fixed-sized patches as vertices.
- Extract patch features using a convolutional neural network.
- ► Learn ROI representations using a graph neural network.



Figure 2: Example ROI represented as a graph of patches.

- ► Train a graph neural network (GNN) using a self-supervised contrastive loss without any need for labels.
- ► Establish the retrieval database with the representations extracted by the GNN.
- ► Perform retrieval using Euclidean distance between the representations.

Self-Supervised Learning

- 1. Sample a mini-batch of M ROI graphs.
- 2. Augment each graph twice by randomly dropping vertices, resulting in 2M graphs in the batch.
- 3. Encode each graph using the GNN.
- 4. Apply a nonlinear transformation using an MLP projection.
- 5. Compute the loss function for a positive pair (i, j) as

$$l_{i,j} = -\log \frac{\exp(sim(z_i, z_j)/\tau)}{\sum_{k=1}^{2M} \mathbb{I}_{[k \neq i]} \exp(sim(z_i, z_k))/\tau}$$

where sim is the cosine similarity, z is the output of the projection, and au is the temperature parameter.

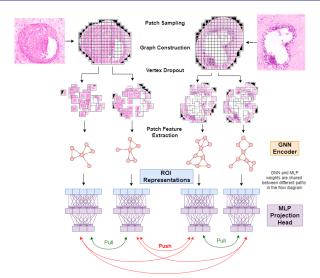


Figure 3: The self-supervised learning pipeline.

Graph Neural Network

- Common elements:
 - Neighborhood aggregation: encodes context.
 - Local pooling: learns hierarchical features.
 - Global pooling: aggregates vertex features into graph representation.
- GCN: A number of stacked graph convolution layers, followed by global pooling.
- ▶ DiffPool: In addition to vertex encoding, learns vertex cluster assignments for local pooling.
- GraphConv: Top-k local pooling by dropping vertices based on a learned score.

Data Set

Table 2: Class distribution of slides and ROIs in training, validation, and test sets. Note that a slide can contain multiple ROIs corresponding to different diagnostic labels, resulting in a multi-label setting for each slide.

		Benign	Atypia	In Situ	Invasive	Total
Slide	Training Set	30	16	16	13	39
	Validation Set	15	7	8	6	18
	Test Set	16	8	9	6	21
	Total	61	31	33	25	78
ROI	Training Set	226	55	154	102	537
	Validation Set	109	25	56	50	240
	Test Set	105	30	69	49	253
	Total	440	110	279	201	1030

Results

Table 3: ROI retrieval results for different methods and training settings.

Method	Architecture	MAP@10	MAP@25	
Supervised	DiffPool	0.62	0.59	
	GraphConv	0.73	0.64	
	GCN	0.80	0.76	
Self-Supervised	DiffPool	0.78	0.70	
	GraphConv	0.82	0.75	
	GCN	0.86	0.80	

Results

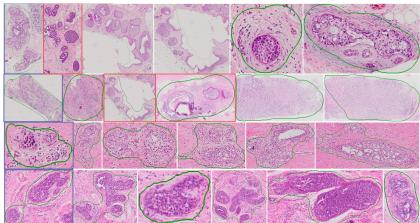


Figure 4: Retrieval examples using the best model, showing the top five retrieved items. Blue: Query, Red: Irrelevant, Green: ROI. Query ROI classes from top to bottom are: in situ, invasive, atypia, and benign.

Conclusions

- ROI images have vastly different shapes and sizes.
- ► Labeling ROIs is time-consuming.
- We proposed a framework to generate representations for variable-sized ROIs without label-based supervised learning.
- ➤ We demonstrated the representation power of the proposed approach in a retrieval scenario with comparative experiments on a breast histopathology data set.

Acknowledgment: This work was supported in part by the Scientific and Technological Research Council of Turkey (grant 117E172).

