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Introduction
O Objective

= Explore a new paradigm for object recognition in autonomous driving:
= Excellent accuracy
= Ultra low power consumption and time delay

J Contribution

= An event driven model
Spiking neural networks that can directly process raw LIDAR pulses (without point-cloud or voxelization).

= Sim LIDAR dataset

A comprehensive temporal pulses dataset that simulates LIDAR reflection of different road conditions and
target objects in diverse noise environments.

» Extraordinary time- and energy-efficiency on real-world data Q
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Motivation

O Why Spiking Neural Network (SNN) (rather than conventional neural network)
= Data representation: Spikes have inherent temporal information.
* [nfo. processing: Event driven, asynchronism
» Hardware friendly: energy efficient

d Why Raw Temporal Pulses (rather than point-clouds/voxels)
= Eliminates the restrictions of frames.
= Can achieve better time efficiency
= Have less computational overhead.
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Rationale & Methods

(J Neuronal Model

X1 Connection weights

Activation function

Xn Total input
A

Neuron output
inputs

ANN
Input / Output continuous real value / non-sparse

linear combination + activation

Neuronal Model (weighted sum)

Input Spikes Output Spikes
| |

Accumulation Thresholding

SNN
discrete spikes / sparse

accumulation + thresholding
(integrate-and-fire)

Biological Plausible

O
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Rationale & Methods
[ Neuronal Model
= non-leaky integrate and fire (n-LIF) neuron [1]
@ fl fz It3 X L Inptljt Sl,pikes - \ Output Spikes
inp'i%i\l\time
(b) — - . ||
syn:aptic current time
membrane voItage; time
(d) ' .
output spikes tout tim
Integrate: dv; (t) _ Z wiik(t — t;)
« Synaptic current /: when there is a spike propagating dt — !
« Membrane voltage V: accumulates from the current ! L it>0 Q
Fire: _ . — , Ut = 8
« generate a spike when V > threshold k(t) = u(t)e u(t) = { 0, otherwise .

[1] H. Mostafa, “Supervised learning based on temporal coding in spiking neural networks”, IEEE Transactions on Neural Networks and Learning Systems, vol. 29, no. 7, pp. 3227-3235, 2018.
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Rationale & Methods

[ Encoding Techniques of Spike Train
= Spike count/rate X

ej:E e’

» Temporal coding (arrival/interval time) v £ Ypecwie —1

1 System Flow & Network structure

Asynchronous inputs Spiking convolutional
in form of time delays layers

O

Target object

Spiking Spiking DR |
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Experiment & Evaluation

1 Datasets
= Sim LiDAR
= Arrival time
= 32 categories
= Noise injection
= KITTI
= Truncated
= 8 categories

= 32,456/8,000 samples (train/test) .

= Dynamic visual sensor (DVS) dataset [2]
= event-based camera (asynchronous)

= 36 categories (a~2z,0~9)

= 3,453/3,000 samples (train/test) A9 41016

[2] G. Orchard, C. Meyer, R. Etienne-Cummings, C. Posch, N. Thakor, and R. Benosman, “HFirst: a temporal approach to object recognition”, IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 37,no. 10, pp. 2028-2040, 2015.

Objects:
car, pedestrian, truck

ARAX

(a) 0—0.1 (b) 0 —0.2 (c) 0—0.33 (d) 0—-0.5
Diverse noise levels

Road conditions:
tunnel, open road
lower/upper bridge

road (walls on one/two side)
road (lamps on one/two side)

L ONLY for visualization

Converted to gray-scale images

| Objects:
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|
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3D bbox

LiDAR point clouds

Truck (d), Cyclist (e)
Tram (f)

Person sitting (g)
Misc (h, i)
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DVS barrel dataset [2]
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(] Results

= Sim LiDAR

(robustness against noise)

DVS Dataset

(compare with existing models)

Model Method Accuracy Noise Range | 0-0.10 | 0-020 | 0-0.33 | 0-0.50
[2] HFirst Temporal 84.9% Accuracy | 99.83% | 96.16% | 82.66% | 68.16%
[3] CNN Spike-based 91.6% © ,

[3] CNN Frame-based 95.2% " = :
Our model Spiking MLP 99.5% 0 ata ratio:

N contributing _pulses

Rdata -

Sample Count
n 8 B

=]

KITTI

(compare with conventional CNN)

0 0.5 1 15 2 25 3
Recognition Time Needed (ms)

(a)

Acc.  Tree Riata Power Consumption = — The ropo Sed SNN

Model %) (ms) (%)  (a=0.37 pJ / a=45 pJ) g prop
€15
SCNN 96.62  2.02 76 29.83 nJ/3.63 ul 8., only needs part of
CNN 8822 258 100 0.67J 8 ; !
VGG-16 9272 11.34 100 29517 8 s \ ‘ ’ H M the 'np'“'t DUIseS'
ResNet-50  92.84  71.30 100 18.54 J ol sl o LA . .
0.1 0.2 0.3 0. 0.5 0.6 0.7 0.8 0.9

Number of Spikes Consumed Towards Decision (Ratio to Total)
(b)
Efficiency of proposed model
[2] G. Orchard, C. Meyer, R. Etienne-Cummings, C. Posch, N. Thakor, and R. Benosman, “HFirst: a temporal approach to object recognition”, IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 37,no. 10, pp. 2028-2040, 2015.
[3] J. A. P'erez-Carrasco, B. Zhao, C. Serrano, B. Acha, T. Serrano-Gotarredona, S. Chen, and B. Linares-Barranco, “Mapping from frame-driven to frame-free event-driven vision systems by low-
rate rate coding and coincidence processing—application to feedforward ConvNets”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 11, pp. 2706-2719, 2013
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Discussion & Conclusion

d Conclusion

The proposed SNN has remarkable accuracy
Extraordinary time and energy efficiency
Great potential in resource- and/or time-constrained applications

J Future Work

Event-driven effective and efficient 3D object detection
Combination with neuromorphic hardware
End to end event driven solution

Event-driven sensor

Spiking hardware with LIF unit

SNN model

O
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