Temporal Pulses Driven Spiking Neural Network for Time and Power Efficient Object Recognition in Autonomous Driving

Wei Wang¹, Shibo Zhou², Jingxi Li², Xiaohua Li², Junsong Yuan¹, Zhanpeng Jin¹

¹ University at Buffalo, ² Binghamton University

OUTLINE

- I. Introduction
- II. Motivation
- III. Rationale & Methods
- IV. Experiment & Evaluation

BINGHAMTON

UNIVERSITY

STATE UNIVERSITY OF NEW YORK

0

σ

0

V. Discussion & Conclusion

Introduction

Objective

- Explore a new paradigm for object recognition in autonomous driving:
 - Excellent accuracy
 - Ultra low power consumption and time delay
- Contribution
 - An event driven model

Spiking neural networks that can directly process raw LiDAR pulses (without point-cloud or voxelization).

• Sim LiDAR dataset

A comprehensive temporal pulses dataset that simulates LiDAR reflection of different road conditions and target objects in diverse noise environments.

Extraordinary time- and energy-efficiency on real-world data

Motivation

Why Spiking Neural Network (SNN) (rather than conventional neural network)

- **Data representation:** Spikes have inherent temporal information.
- Info. processing: Event driven, asynchronism
- Hardware friendly: energy efficient

Why Raw Temporal Pulses (rather than point-clouds/voxels)

- Eliminates the restrictions of frames.
- Can achieve better time efficiency
- Have less computational overhead.

Rationale & Methods

Neuronal Model

SNN

discrete spikes / sparse accumulation + thresholding (integrate-and-fire)

Biological Plausible

Rationale & Methods

Neuronal Model

non-leaky integrate and fire (n-LIF) neuron [1]

Integrate:

- Synaptic current *I*: when there is a spike propagating •
- Membrane voltage *V*: accumulates from the current Fire:
- generate a spike when V > threshold •

[1] H. Mostafa, "Supervised learning based on temporal coding in spiking neural networks", IEEE Transactions on Neural Networks and Learning Systems, vol. 29, no. 7, pp. 3227–3235, 2018.

Rationale & Methods

- Encoding Techniques of Spike Train
 - Spike count / rate X
 - Temporal coding (arrival/interval time)

□ System Flow & Network structure

Experiment & Evaluation

event-based camera (asynchronous)

36 categories (a \sim z, 0 \sim 9)

3,453/3,000 samples (train/test)

A B C D E F G H | J K L M N O P Q R S T U V W X Y Z 0 1 2 3 4 5 6 7 8 9

(a) 0 - 0.1

(b) 0 - 0.2

Diverse noise levels

Converted to gray-scale images

ONLY for visualization

3D bbo:

(c) 0 - 0.33

LiDAR point clouds

8

(d) 0 - 0.5

[2] G. Orchard, C. Meyer, R. Etienne-Cummings, C. Posch, N. Thakor, and R. Benosman, "HFirst: a temporal approach to object recognition", *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 37,no. 10, pp. 2028–2040, 2015.

Experiment & Evaluation

Results

DVS Dataset

(compare with existing models)

Model	Method	Accuracy
[2]	HFirst Temporal	84.9%
[3]	CNN Spike-based	91.6%
[3]	CNN Frame-based	95.2%
Our model	Spiking MLP	99.5%

KITTI

(compare with conventional CNN)

Model	Acc. (%)	T_{rec} (ms)	$R_{data}_{(\%)}$	Power Consumption (α =0.37 pJ / α =45 pJ)
SCNN	96.62	2.02	76	29.83 nJ/3.63 μJ
CNN	88.22	2.58	100	0.67 J
VGG-16	92.72	11.34	100	2.95 J
ResNet-50	92.84	71.30	100	18.54 J

Sim LiDAR

(robustness against noise)

Intelligence, vol. 37,no. 10, pp. 2028-2040, 2015. [3] J. A. P'erez-Carrasco, B. Zhao, C. Serrano, B. Acha, T. Serrano-Gotarredona, S. Chen, and B. Linares-Barranco, "Mapping from frame-driven to frame-free event-driven vision systems by lowrate rate coding and coincidence processing-application to feedforward ConvNets", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 11, pp. 2706–2719, 2013

Discussion & Conclusion

Conclusion

- The proposed SNN has remarkable accuracy
- Extraordinary time and energy efficiency
- Great potential in resource- and/or time-constrained applications

Given States Future Work

- Event-driven effective and efficient 3D object detection
- Combination with neuromorphic hardware
- End to end event driven solution
 - Event-driven sensor
 - Spiking hardware with LIF unit
 - SNN model

Ο

Thank You !

