Interpreting Emotion Classification Using Temporal Convolutional Models

 $\bullet \bullet \bullet$

Authors: Manasi Bharat Gund Abhiram Ravi Bharadwaj Dr. Ifeoma Nwogu

The Team

Manasi Bharat Gund manasigund22@gmail.com

Dr. Ifeoma Nwogu ion@cs.rit.edu

Motivation

- Hypothesis:
 - Changes in facial expressions are best recognized with movement.
- Problem:
 - Image based models provide good results.
 - Computational cost with video based convnets.
- Solution:
 - Build two models which use temporal data:
 - Stacked Convolutional Network (SCN)
 - Temporal Convolutional Network (TCN)

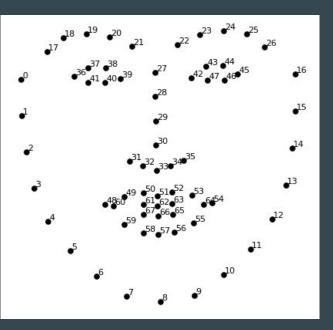


Fig 1. Facial Landmarks

Datasets

• CK+:

- 593 videos of subjects going from neutral emotion to extreme emotion.
- Classes: Anger, Contempt, Happy, Sad, Disgust, Surprise and Fear.
- Data was preprocessed to grayscale and standardized to 20 frames per video.

• SAMM:

- Videos classified into the same classes as with CK+.
- Includes both macro and micro (extremely subtle) expressions.

Background

• Action Units:

- Group of correlated facial landmarks.
- Group of AUs determine emotion and every emotion triggers certain AUs.
- Motion of landmarks during the video can be leaned to predict emotion.

Fig 2. Action Units for 2 emotions. (L) Surprise - AU2 and AU26. (R) Happiness -AU6 and AU12

Steps - Preprocessing

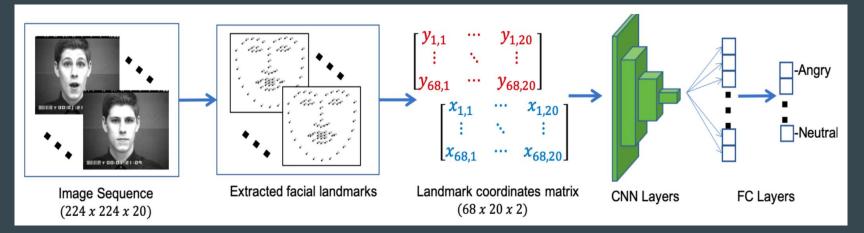


Fig 3. Visual of the steps in the training process of the TCN.

- Standardise to 20 frames.
- Extract facial landmarks for each image (to be consumed by the TCN).

Steps - Model

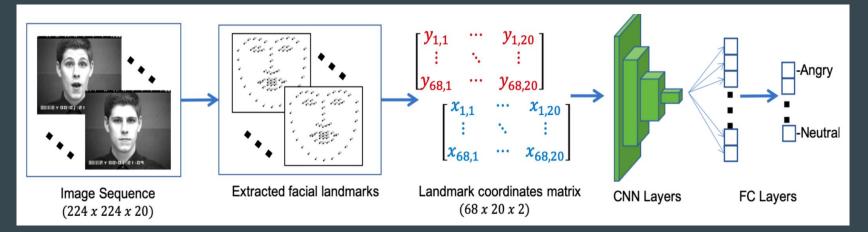
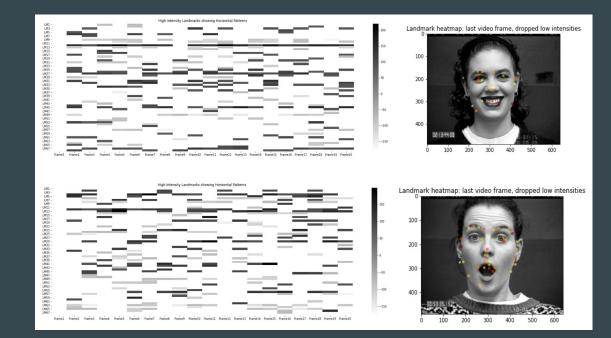



Fig 3. Visual of the steps in the training process of the TCN.

- **Input** 3D tensor of shape { 2 x 20 x 68 }.
- **Architecture** Multiple conv layers (ReLU activated).
- **Output** Emotion class.

Steps - Interpretability (TCN)

- Horizontal patterns (Fig 4, left) show important landmarks responsible for prediction.
- Corresponding landmarks are highlighted (Fig 4, right)

Fig 4. Interpretation of the learned weights. (Top) Happy. (Bottom) Surprise. On the right, dots show the intensity of the landmarks with white being low and red being high.

Results & Conclusion

- Prediction accuracy of 99.6% on CK+ by TCN.
- Both SCN and TCN outperform the baseline on the SAMM dataset.
- Predictions show correlation between highlighted landmarks and AUs

Model	CK+	SAMM	
	Accuracy(%)	TP	F1-score
FAN	99.7	11 <u>-</u>	-
DeepEmotion	99.3	-	-
DeepConv	92.8	-	-
TimeConvNets	97.9	-	-
Baseline MEGC	-	22	0.06
SCN	95.7	30	0.16
TCN	99.6	41	0.33

Fig 5. Result comparison with existing models.

Thank You