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Motivation

e Hypothesis:
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o  Build two models which use temporal data:
m Stacked Convolutional Network (SCN)

m Temporal Convolutional Network (TCN)

Fig 1. Facial Landmarks



Datasets

o CK+:

o 593 videos of subjects going from neutral emotion to extreme emotion.
o Classes: Anger, Contempt, Happy, Sad, Disgust, Surprise and Fear.

o Data was preprocessed to grayscale and standardized to 20 frames per video.
e SAMM:

o Videos classified into the same classes as with CK+.

o Includes both macro and micro (extremely subtle) expressions.



Background

® Action Units:

o Group of correlated facial landmarks.

o Group of AUs determine emotion
and every emotion triggers certain
AUs.

o Motion of landmarks during the
video can be leaned to predict

emotion.

Fig 2. Action Units for 2 emotions. (L)
Surprise - AU2 and AU26. (R) Happiness -
AU6 and AUI12



Steps - Preprocessing
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Fig 3. Visual of the steps in the training process of the TCN.

o Standardise to 20 frames.

o  Extract facial landmarks for each image (to be consumed by the TCN).



Steps - Model
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Fig 3. Visual of the steps in the training process of the TCN.

o Input - 3D tensor of shape{ 2 x 20 x 68 1.
o Architecture - Multiple conv layers (Rel.U activated).

©  Output - Emotion class.



Steps - Interpretability (TCN)

e Horizontal patterns (Fig 4,

Landrl;wark heatmap: last video frame, dropped low intensities
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e Corresponding landmarks
are highlighted (Fig 4,
right)

Landrgark heatmap: last video frame, dropped low intensities
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Fig 4. Interpretation of the learned weights. (Top) Happy. (Bottom) Surprise.
On the right, dots show the intensity of the landmarks with white being low
and red being high.



Results & Conclusion

| | samM
e Prediction accuracy of 99.6% on CK+ by

FAN 99.7 -

e Both SCN and TCN outperform the
DeepEmotion 99.3 -
baseline on the SAMM dataset. DeepConv 92.8 )

e Predictions show correlation between TimeConvNets 91.9 -

highlighted landmarks and AUs Baseline MEGC ‘ | 22

TCN

SCN ‘ 30

Fig 5. Result comparison with existing
models.



Thank You



