Partial Monotone Dependence

paper by D. Khryashchev, R. Haralick, and H. Vo.

Notation and assumptions

Without the loss of generality we assume that all numerically valued random variables X and Y are standardized

$$E_X[X] = E_Y[Y] = 0$$
 and $E_X[X^2] = E_Y[Y^2] = 1$.

All of the transformations f, g are Borel-measurable functions, such that

$$f,g:\mathbb{R}\to\mathbb{R}, E[f(\cdot)]=E[g(\cdot)]=0$$
 and $E[f(\cdot)^2]=E[g(\cdot)^2]=1$.

Notation and assumptions

Without the loss of generality we assume that all numerically valued random variables X and Y are standardized

$$E_X[X] = E_Y[Y] = 0$$
 and $E_X[X^2] = E_Y[Y^2] = 1$.

All of the transformations f, g are Borel-measurable functions, such that

$$f,g:\mathbb{R}\to\mathbb{R}, E[f(\cdot)]=E[g(\cdot)]=0$$
 and $E[f(\cdot)^2]=E[g(\cdot)^2]=1$.

We will denote Pearson product-moment (linear) correlation as

$$\rho(X,Y) = E_{XY}[XY]$$

Maximal Correlation

The first measure of dependence that fits almost all of the requirements of Renyi postulates was proposed by Gebelein in 1941 [2]

$$\rho_{max}(X,Y) = \max_{f,g} \rho(f(X)g(Y))$$

Maximal Correlation

The first measure of dependence that fits almost all of the requirements of Renyi postulates was proposed by Gebelein in 1941 [2]

$$\rho_{max}(X,Y) = \max_{f,g} \rho(f(X)g(Y))$$

Which following our assumptions simplifies to

$$\rho_{max}(X,Y) = \max_{f,g} E_{XY}[f(X)g(Y)]$$

Monotone Correlation

Kimeldorf and Sampson [3] demonstrated that maximization over all Borel-measurable functions is too broad and, in some cases, leads to $\rho_{max}(X,Y) > 0$ for independent random variables.

Monotone Correlation

Kimeldorf and Sampson [3] demonstrated that maximization over all Borel-measurable functions is too broad and, in some cases, leads to $\rho_{max}(X,Y) > 0$ for independent random variables.

They introduced the monotone correlation coefficient satisfying all the postulates

$$\rho_{mono}(X,Y) = \max_{f,g:monotone} \rho(f(X)g(Y)).$$

Monotone Correlation

Kimeldorf and Sampson [3] demonstrated that maximization over all Borel-measurable functions is too broad and, in some cases, leads to $\rho_{max}(X,Y) > 0$ for independent random variables.

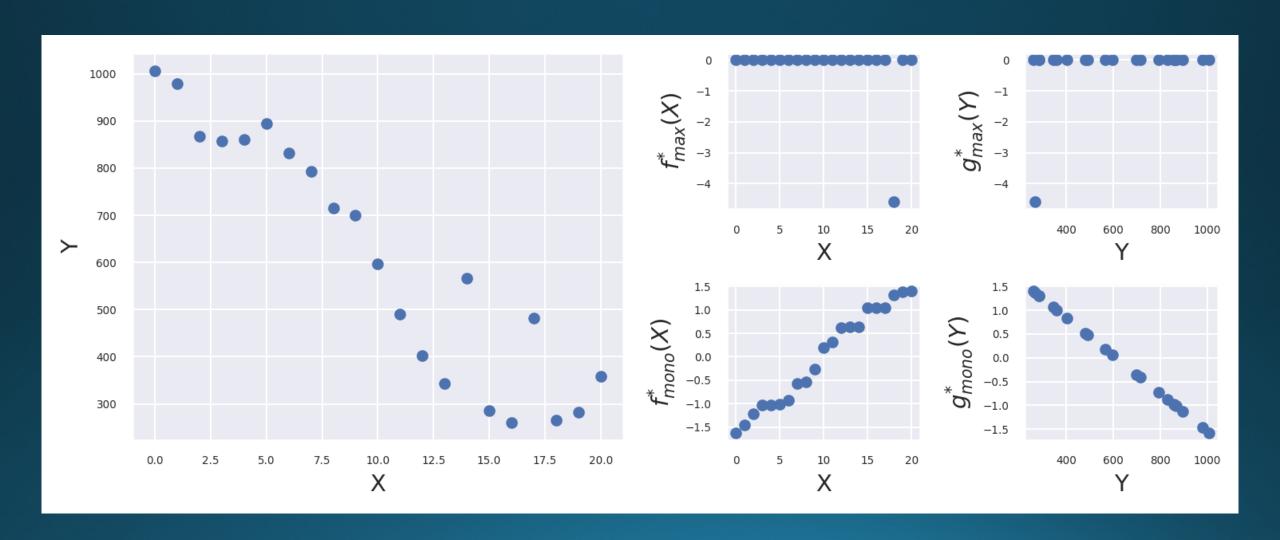
They introduced the monotone correlation coefficient satisfying all the postulates

$$\rho_{mono}(X,Y) = \max_{f,g:monotone} \rho(f(X)g(Y)).$$

Clearly,

$$|\rho(X,Y)| \leq \rho_{mono}(X,Y) \leq \rho_{max}(X,Y).$$

Limitations of ρ_{max} and ρ_{mono}



Partial Monotone Correlation

To mitigate the limitations of the Maximal and Monotone Correlation, we introduce Partial Monotone Correlation coefficient:

$$\rho_{p.mono}(X,Y,m,n) = \sup_{f_m,g_n} \rho(f_m(X)g_n(Y)),$$

Partial Monotone Correlation

To mitigate the limitations of the Maximal and Monotone Correlation, we introduce Partial Monotone Correlation coefficient:

$$\rho_{p.mono}(X,Y,m,n) = \sup_{f_m,g_n} \rho(f_m(X)g_n(Y)),$$

$$m = |\{i|f_m(x_{(i)}) > f_m(x_{(i+1)})\}|,$$

 $n = |\{j|g_n(y_{(j)}) > g_n(y_{(j+1)})\}|.$

First, we compute $\rho_{p.mono}$ using Simultaneous Perturbation Stochastic Approximation algorithm with slight modifications [10].

First, we compute $\rho_{p.mono}$ using Simultaneous Perturbation Stochastic Approximation algorithm with slight modifications [10].

Our 1st problem is to find f_0 and g_0 that maximize $0 \le E_{XY}[f_0(X)g_0(Y)] \le 1$.

First, we compute $\rho_{p.mono}$ using Simultaneous Perturbation Stochastic Approximation algorithm with slight modifications [10].

Our 1st problem is to find f_0 and g_0 that maximize $0 \le E_{XY}[f_0(X)g_0(Y)] \le 1$.

We will look for f_0 and g_0 in the form $f_0(X) = X + \Delta^x$ and $g_0(Y) = Y + \Delta^y$.

Our strictly monotone constraint on f_0 and g_0 is

$$\forall i < M: x_{(i)} + \delta_i^x < x_{(i+1)} + \delta_{i+1}^x$$

 $\forall j < N: y_{(j)} + \delta_j^y < y_{(j+1)} + \delta_{j+1}^y.$

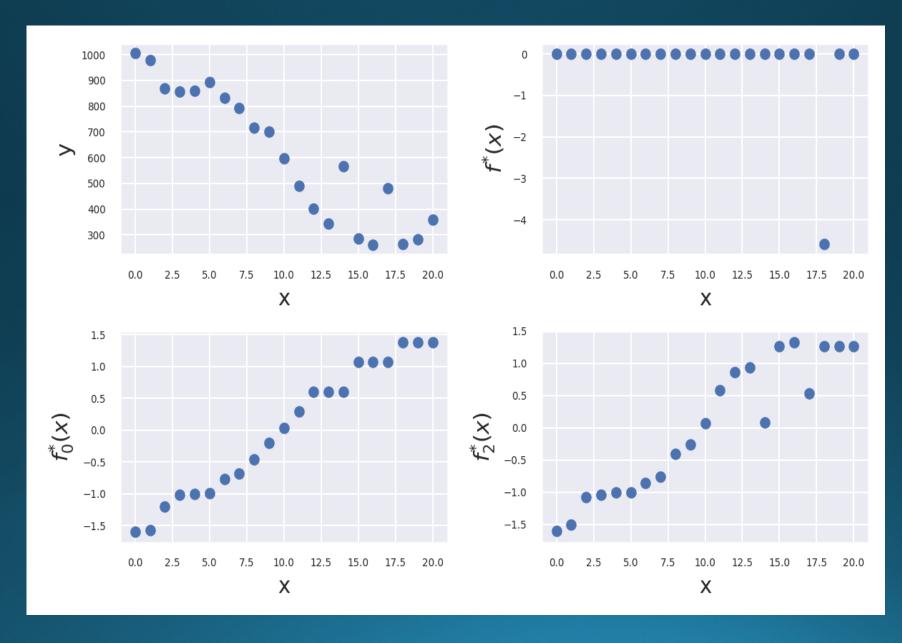
Our strictly monotone constraint on f_0 and g_0 is

$$\forall i < M: x_{(i)} + \delta_i^x < x_{(i+1)} + \delta_{i+1}^x$$

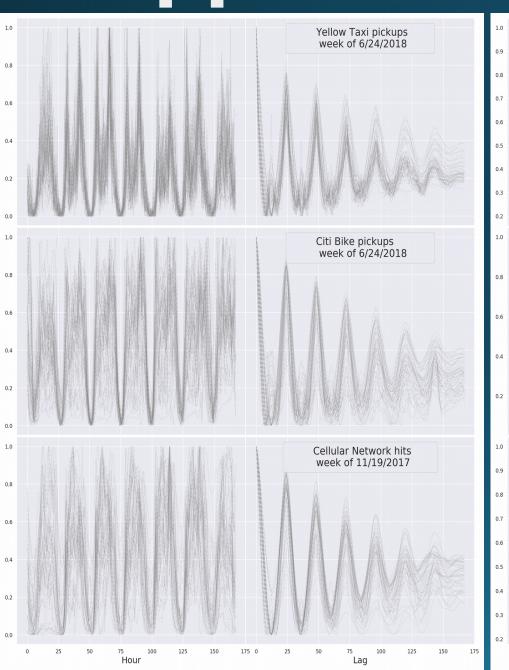
 $\forall j < N: y_{(j)} + \delta_j^y < y_{(j+1)} + \delta_{j+1}^y.$

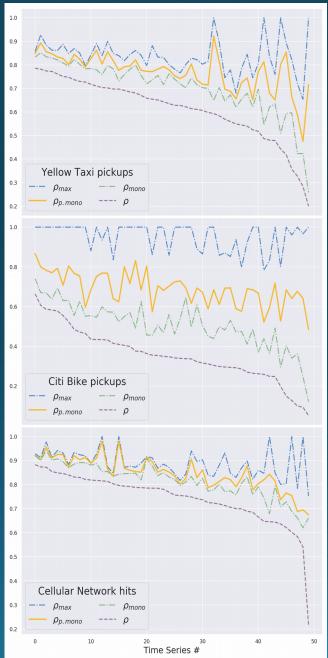
We pick a uniformly random direction through a point Z on (M+N)-dimensional sphere: $Z \sim N(0,I)$, ||Z|| = 1. The first M dimensions $Z_1^M = (z_1, ..., z_M)^T$ correspond to the direction of change in Δ^x , the last N dimensions $Z_{M+1}^{M+N} = (z_{M+1}, ..., z_{M+N})^T$ correspond to the direction of change in Δ^y .

P_{p.mono} VS P_{mono} VS P_{max}



Applications. Correlation





As expected, the values of the correlation coefficients are arranged as follows:

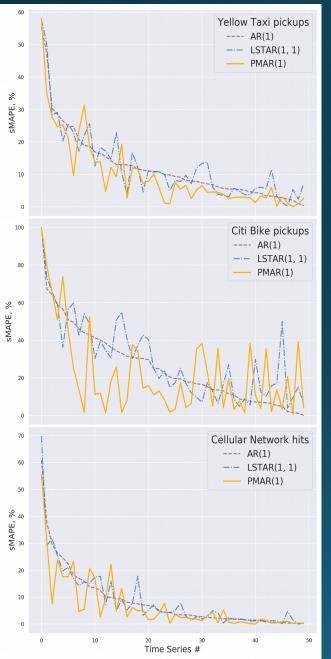
$$\rho \leq \rho_{mono} \leq \rho_{p.mono} \leq \rho_{max}$$

Applications. Forecasting

We apply $\rho_{p.mono}$ in a basic nonlinear autoregressive model, PMAR (Partial Monotone AutoRegression). Given time series $Z = \{z_t\}_1^N = \{z_1, ..., z_N\}$ it is

$$g_0^*(z_t) = \alpha f_m^*(z_{t-1}) + \beta + \epsilon_t.$$

Results of forecasting



sMAPE				
	AR	LSTAR	PMAR	
Taxi	12.27%	12.68%	9.86%	
Bike	26.04%	29.55%	22.0%	
Cellular	8.63%	8.93%	6.94%	

bias				
	AR	LSTAR	PMAR	
Taxi	-7.91	1.22	-16.17	
Bike	1.30	1.39	0.54	
Cellular	0.99	4.82	14.40	

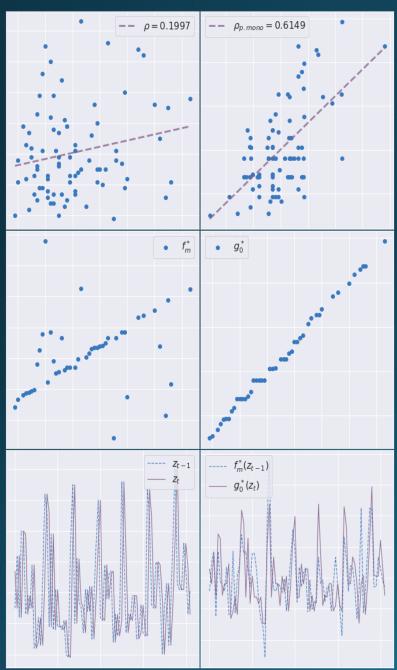
We compared the performances of the models in terms of

$$SMAPE = \frac{100 \%}{N} \sum_{t=1}^{N} \frac{|\widehat{z_t} - z_t|}{|\widehat{z_t}| + |z_t|}$$

and

$$bias = \frac{1}{N} \sum_{t=1}^{N} \widehat{z_t} - z_t$$

Yellow Taxi pickups transformed



We applied our $\rho_{p.mono}$ to a taxi pickup time series.

Top-left: scatter plot of original time series, z_t vs z_{t-1} . Top-right: scatter plot of transformed time series, $g_0^*(z_t)$ vs $f_m^*(z_{t-1})$.

Middle-left: maximizing transformation f_m^* . Middle-right: maximizing transformation g_0^* .

Bottom-left: original series z_t vs its lagged copy z_{t-1} . Bottom-right: transformed time series $g_0^*(z_t)$ and its lagged copy $f_0^*(z_{t-1})$ aligned.