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Notation and assumptions

Without the loss of generality we assume that all numerically valued random
variables X and Y are standardized

Ex[X] = Ey[Y] = 0 and Ex|X?| = Ey|V?| =1.

All of the transformations f, g are Borel-measurable functions, such that
f,g:R - R,E[f()] = E[g()] = 0 and E[f()?] = E[g(-)*| = 1.
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Without the loss of generality we assume that all numerically valued random
variables X and Y are standardized

Ex[X] = Ey[Y] = 0 and Ex|X?| = Ey|V?| =1.

All of the transformations f, g are Borel-measurable functions, such that
f,g:R - R,E[f()] = E[g()] = 0 and E[f()?] = E[g(-)*| = 1.

We will denote Pearson product-moment (linear) correlation as
p(X,Y) = Exy[XY]



Maximal Correlation

The first measure of dependence that fits almost all of the requirements of Renyi
postulates was proposed by Gebelein in 1941 [2]
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Maximal Correlation

The first measure of dependence that fits almost all of the requirements of Renyi
postulates was proposed by Gebelein in 1941 [2]

Pmax(X,Y) = r?,agxp(f(X)g(Y))

Which following our assumptions simplifies to

Pmax(X,Y) = r}lagx Exyl[f(X)g(Y)]
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independent random variables.
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Clearly,

P(X,Y)| < Pimono X Y) < prax X, Y).



Limitations of p__and p

mono
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Partial Monotone Correlation

To mitigate the limitations of the Maximal and Monotone Correlation, we
introduce Partial Monotone Correlation coefficient:

pp.mono(X: Y,m,n) = sup p(fm(X)gn(Y))a
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Partial Monotone Correlation

To mitigate the limitations of the Maximal and Monotone Correlation, we
introduce Partial Monotone Correlation coefficient:

pp.mono(X: Y,m,n) = sup p(fm(X)gn(Y))a

mIn

m = [{i|fm(x@®) > fm(x@n)}s
n=|{j|9.(y) > 9a(¥G11)}
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Approximation algorithm with slight modifications [10].
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Approximation of p_

First, we compute p,.0n, USing Simultaneous Perturbation Stochastic
Approximation algorithm with slight modifications [10].

Our 1%t problem is to find f, and g, that maximize 0 < Eyy[fo(X)go(Y)] < 1.

We will look for f, and g in the form fy(X) = X+ 4* and g,(Y) =Y + 47.



Approximation of p

Our strictly monotone constraint on f, and g, is
Vi < M: x(i) + 6{ < x(i+1) + 6?_'_1
Vj < N:yo') + 5]}, <Yj+1) + 5]}-,+1.
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Approximation of p

Our strictly monotone constraint on f, and g, is
Vi< M: x(,;) + 6{ < x(i+1) + 5?_'_1
Vj < N:y(f) T 6]}’ < ¥Y(j+1) + 6;-:_1.

p.mono

We pick a uniformly random direction through a point Z on (M +N) -
dimensional sphere: Z~N(0,I), ||Z|| =1. The first M dimensions Z) =

(24, ...,Zy)" correspond to the direction of change in A%, the last N dimensions

Z%flv = (Zp41, -, Zy4n)! correspond to the direction of change in AY.



VS

P.MOonNo mono max

1000 0000000000000 00000 o0
900

800
700
600
500
400

300

1.5 10.0 2. 3. 5 . 2. . 1.5 10,0 125 150 175 20.0

X X




0.8

0.6

0.4

0.2

0.0

1.0

08

0.4

02

0.0

1.0

08

0.6

0.4

0.2

0.0

50

Applications. Correlation

75
Hour

100

Yellow Taxi pickups
week of 6/24/2018

Citi Bike pickups
week of 6/24/2018
Cellular Network hits
week of 11/19/2017
125 150 175 0 25 50 75 100 125 150

10

0.9

0.8

0.7

0.6

0.5

0.4

0.8

0.6

0.4

0.2

1.0

0.9

0.8

0.7

0.6

0.5

04

0.3

0.2

Yellow Taxi pickups \

= DPmax

Pp.mono

Pmono

S0

mimimimim

\

P [

Citi Bike pickups

== Dmax

Pp.mono

menO

Cellular Network hits

= i Bmax

Pp.mono

Pmono

S 0

20
Time Series #

30

As expected, the values of
the correlation coefficients
are arranged as follows:

p S menO S pp.mono S pmax



Applications. Forecasting

We apply p,mono In a basic nonlinear autoregressive model, PMAR (Partial
Monotone AutoRegression). Given time series Z = {z,}) = {zy, ..., zy} it is

90(z¢) = af(z,-1) + P + €.



Results of forecasting

) We compared the performances
AT of the models in terms of
N
AR | LSTAR | PMAR 0 ~
e 100 % |Z; — z,]
Taxi | 12.27% | 12.68% | 9.86% S = 7|+ |z,]
i =1 12¢] T 124
Sl | Bike | 26.04% | 29.55% | 22.0% t=
—=— LSTAR(1, 1)
B | Cellular | 8.63% | 8.93% | 6.94%
and
bias N
Cellular Network hits AR LSTAR PMAR c ~
" e bias = —Z Zy — Zy
Al Taxi e | ey N =

Bike 1.30 1.39 0.54

Cellular 0.99 4.82 14.40

20 30
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We applied our p,, ;,on, to a taxi pickup time series.

Top-left: scatter plot of original time series, z; vs z;_;.
Top-right: scatter plot of transformed time series,

9o(2e) V8 fm(Ze-1)-

Middle-left: maximizing transformation f,.
Middle-right: maximizing transformation g.

Bottom-left: original series z; vs its lagged copy z;_;.
Bottom-right: transformed time series g,(z;) and its

lagged copy f,(z;_1) aligned.
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