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Background

How to give agents the ability of continuous learning like human and animals
is still a challenge. In the regularized continual learning method OWM, the
constraint of the model on the energy compression of the learned task is
ignored, which results in the poor performance of the method on the dataset
with a large number of learning tasks.
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Contributions

We propose an energy minimum regularization(EMR) method to
constrain the energy of learned tasks, providing enough learning space for
the following tasks that are not learned, and increasing the capacity of the
model to the number of learning tasks.

We propose a new measurement method called AD to measure the
anti-degradation degree of model.

Extensive experiments show the superiority of EMR in learning
sequential tasks and EMR can make the model less sensitive to multiple
tasks and network size.
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Energy Minimum Regularization

We define the energy of a task Ti as

E(Ti) =
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In our EMR model, the loss function is

L = Lcls + γLemr = Lcls + γE(T) (1)

where Lcls is classification loss.
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Improved Energy Minimum Regularization

In order to reduce the calculation burden, we improve the calculation formula
of energy as follow.

E(Ti) =

Nl∑
i=1

L∑
l=1

E(x̂l
i) (2)
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where βl is a constant threshold. After modification, we get new feature
x̂l

i = [x̂l
i1, x̂l

i2, · · · , x̂l
id]. The energy of feature x̂l

i is
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i) =
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|x̂l
ij| (4)
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Experiments
Experiments and Analysis on MNIST

Methods accuracy comparison on ordered MNIST and 10-shuffled MNIST.
”SFT” denotes sequential fine tuning.

Methods Ordered MNIST(%) 10-Shuffled MNIST(%)
SFT 10.01 10.03 ± 0.01
EWC 53.6 52.72±1.36
CAB 95.03 94.91±0.30
OWM 96.71 96.30±0.03
EMR 97.89 97.51±0.05
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Experiments
Experiments and Analysis on Scene Datasets

Comparison of performance of different methods in the disjoint CIFAR10 task
and ImageNet task. The quantitative metrics is accuracy(%).

Methods CIFAR10 ImageNet
Pre-train None resnet152

SFT 20.14 0.69
EWC 31.09 -
OWM 52.83 73.80
EMR 53.72 76.29
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Experiments
Ablation Experiments on CASIA-HWDB

Model Capacity Model capacity experiments on CASIA-HWDB dataset. Left. The
performance comparison of methods EMR and OWM on tasks with different
categories. The hidden neurons is fixed to 4000. Right.The performance comparison
of methods EMR and OWM on tasks with different neurons. The tasks number is
3755.
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Experiments
Ablation Experiments on CASIA-HWDB

Anti-degradation of Model
We define the anti-degradation degree of the model as

AD(model) =
1
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Conclusion

In this paper, we propose a novel method called energy minimum regularization

(EMR) to effectively address the issue of catastrophic forgetting in continual learning

and model capacity problem. The proposed EMR has not only a solid theory

foundation, but also obtain the support of experimental results. Extensive experiments

show the superiority of EMR in learning sequential tasks and EMR can make the

model less sensitive to multiple tasks and network size.
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End frame

Thanks!
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