

Rotation Invariant Aerial Image Retrieval with Group Convolutional Metric Learning

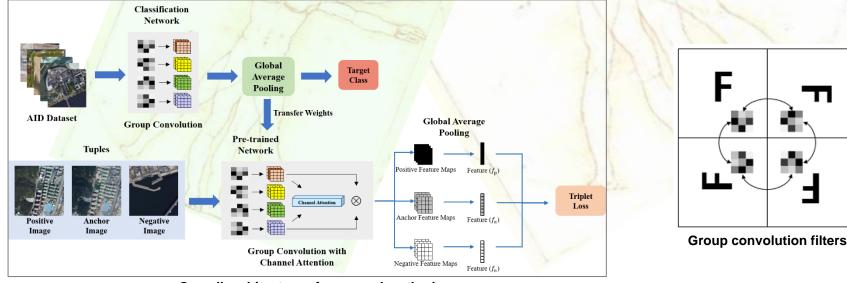
Hyunseung Chung, Woo-Jeoung Nam, Seong-Whan Lee Pattern Recognition & Machine Learning Laboratory

Introduction

Goal

> Developing a framework to retrieve aerial images with rotational variations

- Motivation
 - Rotated aerial image retrieval is highly complex task
 - Contains small objects and buildings with variations in scale, shooting range, and height
 - Robust retrieval network for rotated aerial images in demand
 - Variations in camera viewpoint depending on aircraft


Example images from AID, NWPU-RESISC45, and Google Earth South Korea dataset

Methods

- Network modules
 - Group convolutional neural network (G-CNN)
 - Utilize rotated filters to pretrain the network for classification task
 - Aerial Image Dataset (AID)
 - Fine-tune the pre-trained network with attentive G-CNN and metric learning
 - Channel attention module
 - Emphasize the important features among G-CNN layers
 - Deep metric learning
 - Integrate triplet loss function for training with anchor, positive, and negative

Overall architecture of proposed method

Experimental Results (1/3)

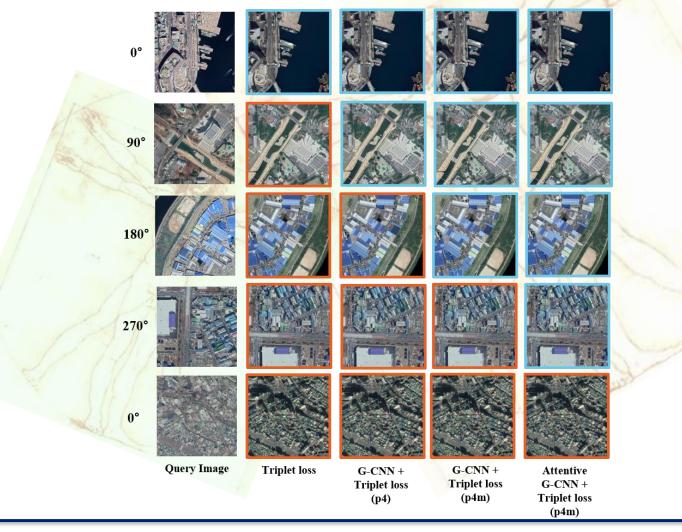
- Performance evaluation on rotated Google Earth South Korea dataset
 - Recall@n
 - The percentage of correctly retrieved query up to different n values

(†) indicates additional rotation training	call @ $n = \frac{1}{k} \sum_{i=1}^{k} \frac{ R_i }{k}$	$\frac{ Rel_i }{ Rel_i } \cdot Rel:$	Top-n retrieved items Total relevant items Imber of query items			
(*) indicates added channel attention	the second	at at	All methods are	pre-trained in AID dataset		
Methods		Recall @ n (%)				
	n = 1	n = 5	n = 10	n = 100		
R-MAC descriptor [†]	6.5	14.5	24.8	64.0		
NetVlad [†]	7.4	17.4	25.1	68.2		
Contrastive loss [†]	8.1	16.8	24.5	65.0		
Triplet loss [†]	6.9	18.0	24.7	65.6		
LDCNN [†]	8.9	18.4	24.7	66.6		
G-CNN (p4m) + Cont. loss	17.8	32.4	38.9	72.0		
G-CNN (p4m) + Cont. *	18.5	32.8	39.8	72.0		
G-CNN (p4) + Triplet loss	20.1	36.0	43.2	76.9		
G-CNN (p4) + Triplet. *	21.2	36.4	43.9	77.2		
G-CNN (p4m) + Triplet loss	23.4	44.0	51.7	84.6		
G-CNN (p4m) + Triplet loss *	24.5	46.9	52.8	86.3		

Experimental Results (2/3)

Performance evaluation on rotated NWPU-RESISC45 dataset

(†) indicates additional rotation training (*) indicates added channel attention	All methods are pre-trained in AID dataset				
Methods	Recall @ n (%)				
	n = 1	n = 2	n = 4	<i>n</i> = 8	
R-MAC descriptor ⁺	23.1	41.4	62.4	83.3	
Contrastive loss [†]	26.6	46.1	66.7	86.4	
NetVlad [†]	27.1	45.3	66.7	85.5	
Triplet loss [†]	35.3	53.1	73.2	88.7	
LDCNN [†]	36.0	54.5	74.0	88.8	
G-CNN (p4m) + Cont. loss	<mark>39</mark> .9	56.6	74.9	88.3	
G-CNN (p4m) + Cont. *	41.1	59.8	76.9	89.3	
G-CNN (p4) + Triplet loss	43.1	60.8	77.6	89.5	
G-CNN (p4) + Triplet. *	43.4	61.3	77.7	89.2	
G-CNN (p4m) + Triplet loss	44.8	62.1	77.8	89.5	
G-CNN (p4m) + Triplet loss *	45.7	64.3	80.2	89.5	



Pattern Recognition & Machine Learning Laboratory

Experimental Results (3/3)

Examples of retrieval results in the rotated Google Earth South Korea dataset

Pattern Recognition & Machine Learning Laboratory