Automatic Tuberculosis Detection Using Chest X-ray Analysis With Position Enhanced Structural Information

— 25th International Conference on Pattern Recognition—

Hermann Y. Nkouanga, Szilárd Vajda
E-mail: {Hermann.YepdjioNkouanga, Szilard.Vajda}@cwu.edu
Jan. 10–15, 2021, Milan, Italy

I. Introduction

II. Related Work

III. System Overview

IV. Experiments

V. Conclusion

Facts, Medical solutions
Data, Digital solutions
System description, Motivation, Details
Feature extraction, Test protocols, Results
Introduction
Facts about Tuberculosis

▶ One of the major life threats (WHO, 2019)
▶ Caused by the Mycobacterium Tuberculosis
▶ Affects lungs, brain, kidneys and spine
▶ Africa and southeast Asia are the most affected
▶ Mortality rate of 1.5 million/year
▶ 9.6 million people developing the disease/year
Medical Solutions to Detect Tuberculosis

Detection:
- Sputum smear microscopy
- Culture methods
- Chest x-ray (CXR) interpretation by radiologists

Problems:
- Elevated medical costs
- Lack of trained personnel
- Unreliable human readings (fatigue, visual impairment)
- Mass screening is difficult
Digital Solutions to Detect Tuberculosis

Solutions:
- Image feature based classification
- Automatic feature based classification

Problems:
- Lack of large data collections
- Adaptability issues for out-of-scope data
Related Work
Data

Montgomery collection:
- Montgomery county DHHS
- Size: 1000x1200 pixels (in average)
- 138 lung images (80 healthy, 58 unhealthy)
- Manually annotated (by radiologists)

Shenzhen collection:
- Shenzhen Hospital in China
- Size: 4020x4892 pixels (in average)
- 676 lung images (342 healthy, 334 unhealthy)
- Manually annotated (by radiologists)
Related Work

Jaeger et al.[4]:
- Lung segmentation (graph cut approach)
- Features extraction (HOG, LBP, CH, IH, GM, SH, etc.)
- SVM classification
- Accuracy: Montgomery (78.3%) and Shenzhen (84.10%)

Vajda et al.[7]:
- Lung segmentation (Atlas method)
- Features extraction (HOG, LBP, CH, IH, GM, SH, etc.)
- Features selection
- MLP classification
- Accuracy: Montgomery (78.3%) and Shenzhen (95.57%)

Pasa et al.[5]:
- ROI extraction
- Black bands or borders cropped from the edges of the images
- CNN classification
- Accuracy: Montgomery (79.0%) and Shenzhen (84.4%)
Related Work Summary

Machine Learning:
- Pros:
 - Explicit image features extraction
 - Large variety of classifiers
 - Limited number of training samples
 - Promising results
- Cons:
 - Dependent on image pre-processing/feature extraction
 - Feature extraction can be time consuming

Deep Learning:
- Pros:
 - Automatic feature extraction
 - Slow
 - Promising results
- Cons:
 - No control over the feature extraction
 - Requires large number of training samples
System Overview
Motivation

Structural feature extraction (LoG):

- Mathematically sound and interpretable
- Fast and easy to extract
- Invariant to image density changes

“Zoom in” capability:

- Analyze local image regions
- Different pathologies appear in specific lung regions
- Structural information encoding by local histograms accumulation
System Overview

Original CXR image → ROI extraction → LoG image → LoG image split

CXR Decision: Healthy/Unhealthy

Local LoG histograms’ consolidation into a feature vector → Histogram extraction

H. Yepdjio & S. Vajda
25th International Conference on Pattern Recognition
System Details

System requirements:
- 8 core Intel CPU 2.8 GHz
- 24 GB RAM
- Ubuntu 18.04 LTS
- Python, OpenCV, Pickle
- Tensorflow, Scikit-learn, Keras

Timing for the different stages:

<table>
<thead>
<tr>
<th>Database</th>
<th>Montgomery</th>
<th>Shenzhen</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROI extraction</td>
<td>1.98 (sec/img)</td>
<td>12.55 (sec/img)</td>
</tr>
<tr>
<td>Image resize</td>
<td>1.46 (sec/img)</td>
<td>8.35 (sec/img)</td>
</tr>
<tr>
<td>LoG extraction</td>
<td>25 (msec/img)</td>
<td>122 (msec/img)</td>
</tr>
<tr>
<td>RF classification</td>
<td>1.34 (msec/img)</td>
<td>0.31 (msec/img)</td>
</tr>
</tbody>
</table>
Details about the Feature Extraction Phase

<table>
<thead>
<tr>
<th>Dataset</th>
<th># rows</th>
<th># columns</th>
<th># bins</th>
<th>values range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montgomery</td>
<td>16</td>
<td>2</td>
<td>44</td>
<td>1 - 45</td>
</tr>
<tr>
<td>Shenzhen</td>
<td>10</td>
<td>1</td>
<td>40</td>
<td>5 - 45</td>
</tr>
</tbody>
</table>
Test Protocols

Evaluation Metrics:

- AUC: computing the area under the receiver operational characteristic (ROC) curve
- Accuracy (ACC) = \(\frac{\text{# of correctly recognized images}}{\text{# of total images}} \times 100 \)

K-fold cross validation:

- 10 folds
Results
ACC/AUC Using LoG Features and Topological Information

<table>
<thead>
<tr>
<th>Classifier</th>
<th>Montgomery ACC (%)</th>
<th>Montgomery AUC</th>
<th>Shenzhen ACC (%)</th>
<th>Shenzhen AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>KNN</td>
<td>69.05</td>
<td>0.681</td>
<td>97.26</td>
<td>0.973</td>
</tr>
<tr>
<td>MLP</td>
<td>71.43</td>
<td>0.707</td>
<td>91.32</td>
<td>0.914</td>
</tr>
<tr>
<td>SVM</td>
<td>54.76</td>
<td>0.500</td>
<td>74.89</td>
<td>0.749</td>
</tr>
<tr>
<td>RF</td>
<td>83.33</td>
<td>0.815</td>
<td>96.35</td>
<td>0.964</td>
</tr>
</tbody>
</table>

Classifiers:
- KNN: KDTree, Euclidean distance, $k = 3$ neighbors
- MLP: sequential model, ReLU, three hidden layers (750, 400, 400 neurons), Adam optimizer
- SVM: linear kernel
- RF: 900 estimators, Gini impurity criterion

Conclusion:
- Best results for Shenzhen obtained by KNN ($k = 3$)
- Best results for Montgomery obtained by RF (900 estimators)
Comparison with Other Systems

<table>
<thead>
<tr>
<th>Method</th>
<th>Montgom. ACC (%)</th>
<th>Montgom. AUC</th>
<th>Shenzhen ACC (%)</th>
<th>Shenzhen AUC</th>
<th>Classifier Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our method</td>
<td>83.33</td>
<td>0.815</td>
<td>96.35</td>
<td>.964</td>
<td>RF</td>
</tr>
<tr>
<td>Vajda et al. [7]</td>
<td>78.3</td>
<td>0.87</td>
<td>95.57</td>
<td>0.99</td>
<td>MLP</td>
</tr>
<tr>
<td>Jaeger et al. [4]</td>
<td>78.3</td>
<td>0.86</td>
<td>84.10</td>
<td>0.88</td>
<td>SVM</td>
</tr>
<tr>
<td>Hwang et al. [1]</td>
<td>–</td>
<td>0.991</td>
<td>–</td>
<td>0.977</td>
<td>CNN</td>
</tr>
<tr>
<td>Hwang et al. [2]</td>
<td>67.4</td>
<td>0.884</td>
<td>83.7</td>
<td>0.926</td>
<td>CNN</td>
</tr>
<tr>
<td>Islam et al. [3]</td>
<td>–</td>
<td>–</td>
<td>88.0</td>
<td>0.91</td>
<td>CNN</td>
</tr>
<tr>
<td>Rajaraman et al. [6]</td>
<td>–</td>
<td>–</td>
<td>89.9</td>
<td>0.948</td>
<td>CNN</td>
</tr>
<tr>
<td>Pasa et al. [5]</td>
<td>79.0</td>
<td>0.811</td>
<td>84.4</td>
<td>0.90</td>
<td>CNN</td>
</tr>
</tbody>
</table>

Conclusions:

- Best accuracy values: 83.33% (Montgomery) and 96.36% (Shenzhen)
- Area under the curve: 5th best (Montgomery), 3rd best (Shenzhen)
- Our system uses a single feature (LoG).
- Our classifier is trained with a limited number of images.
Conclusion
Conclusion

- TB is one of the major life threats costing millions of lives each year.
- Existing solutions to diagnose TB are:
 - Costly
 - Sometimes unreliable
 - Resource demanding
- Our CXR analysis system is:
 - Automatic/affordable/fast image processing solution
 - Uses LoG image feature (intensity changes)
 - “Zoom in” functionality for local image analysis
 - Comparable/better results than current state-of-the-art systems
Bibliography

Abnormality detection and localization in chest x-rays using deep convolutional neural networks.
Automatic tuberculosis screening using chest radiographs.

Efficient deep network architectures for fast chest x-ray tuberculosis screening and visualization.
Scientific Reports 9 (12 2019).

Modality-specific deep learning model ensembles toward improving tb detection in chest radiographs.
Feature selection for automatic tuberculosis screening in frontal chest radiographs.
J. Medical Systems 42, 8 (2018), 146:1–146:11.