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fabric foliage glass leather metal

Provides HIGH-LEVEL information to understand objects

that were not provided by conventional features
Color, Shape

Weak correlation between object and its Understanding material components
visual features helps to understand object itself.



Previous work

PerCV:: %

Perception & Computer Vision Lab.

&

Material recognition in the wild with the materials in context databases

Bell et al. 2015 IEEE Conference on Computer V15|on and Pattern Recognition(CVPR)
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Context information based
material classification
Golden-standard dataset with
23 material classes
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Deep Texture Manifold for Ground Terrain Recognition
Xue et al. 2018 IEEE Conference on Computer Vision and Pattern Recognition(CVPR)
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Shortcut Connection

Shows state-of-the-art
performance with MINC
dataset while using only
color features
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Material classification using frequency and depth-dependent time-of-flight

distortion
Tanaka et al. 2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR)

ToF camera (Kinect)

O Object translation required

Restricted environment

Target object
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I Plastic (PP) Plastic (PS)

(a) The scene of white utensils (b) Classification result
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IR Surface Reflectance Estimation and Material Type Recognition using

Two-stream Net and Kinect Camera This Color-IR data pairs were
Lee et al. 2019 ACM SIGGRAPH v . .
Fabric Fur Leather Metal Paper Wallpaper Wood also used In our experlment
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[ﬁ Restricted Environment
Limited Performance

IR distribution Color image
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1. Verification on Color-feature based Material Recognition

2. Surface Reflectance Estimation with practical environment

3. 3D Segment-wise Material Recognition

4. Two-stream Material Recognition Network with Gradual CNN
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1. Verification on Color-feature based Material Recognition

e MINC-2500: A subset of MINC with balanced class distribution (2500 samples / class)

e MINC-NEW: Another subset of MINC (same patch extraction rules with MINC-2500).

e OUR-NEW: A dataset collected from online (google) and offline(IKEA showroom),
shares context information with MINC-2500.



Proposed work

Perception & Computer Vision Lab.

1. Verification on Color-feature based Material Recognition

e MINC-2500: A subset of MINC with balanced class distribution (2500 samples / class)

e MINC-NEW: Another subset of MINC (same patch extraction rules with MINC-2500).

e OUR-NEW: A dataset collected from online (google) and offline(IKEA showroom),
shares context information with MINC-2500.

OUR DATA = MINC-NEW MINC-2500
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1. Verification on Color-feature based Material Recognition

e MINC-2500: A subset of MINC with balanced class distribution (2500 samples / class)

e MIINC-NEW: Another subset of MINC (same patch extraction rules with MINC-2500).

e OUR-NEW: A dataset collected from online (google) and offline(IKEA showroom),
shares context information with MINC-2500.

Train Data Test Data Accuracy | Test Patches
MINC-2500 81.13% 5,750

MINC-2500 MINC-NEW 69.27% 11,500
OUR-DATA 49.78% 1,334

Significant performance decrease!




(a) Object-rotation acquisition

Emitted IR ray direction x Incidence angle
Obtained IR intensity at 6 ¥ Reflected IR intensity
== Maximum reflected IR ray (Mposition)
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(b) One-shot acquisition
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(c) Camera-rotation acquisition

[sotropicity Uniform Surface | Incidence Angle Range | Required Frame
(a) isotropic X ~35° many
(b) isotropic (0 ~80° 1
(c) anisotropic X ~80° many

(d) Experimental condition for each acquisition method
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(a) Object-rotation acquisition

Emitted IR ray direction
Obtained IR intensity at &

x Incidence angle

¥ Reflected IR intensity

== Maximum reflected IR ray (Mposition)
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[sotropicity Uniform Surface | Incidence Angle Range | Required Frame
(a) isotropic X ~35° many
(b) isotropic (0 ~80° 1
(c) anisotropic X ~80° many

(d) Experimental condition for each acquisition method
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2. Surface Reflectance Estimation with practical environment
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(b) One-shot acquisition
[sotropicity Uniform Surface | Incidence Angle Range | Required Frame
Emitted IR ray direction x Incidence ang]e (a) iSOll’OpiC X ~35° many
Obtained IR intensity at ¥ Reflected IR intensity - . -
) (b) isotropic O ~80 1
== Maximum reflected IR ray (Mposition)
(c) anisotropic X ~80° many

(d) Experimental condition for each acquisition method



Emitted IR ray direction x Incidence angle
Obtained IR intensity at ¥ Reflected IR intensity
== Maximum reflected IR ray (Mposition)

(c) Camera-rotation acquisition

[sotropicity Uniform Surface | Incidence Angle Range | Required Frame
(a) isotropic X ~35° many
(b) isotropic (0 ~80° 1
(c) anisotropic X ~80° many

(d) Experimental condition for each acquisition method




(a) Target scene

P Noises comes from
‘Wi 1ll-registered point cloud
M & indirect reflections!
(b) Segmented 3D point cloud

(c)Pixel-wise reflected IR inte
R LAY
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(c) Camera-rotation acquisition
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3. 3D Segment-wise Material Recognltlonscenel ——
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<Camera-rotation acquisition process(scenel)>
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Registration Normal-based Grid-wise Find dominant Material labeled
output segmentation reflectance merging  label inside cluster segment

>>Requires scene registration, large number of frames & experimental cost..
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3. 3D Segment-wise Material Recognitionscen

<Camera-rotation acquisition process(scenel)>
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Registration Normal-based Grid-wise Find dominant Material labeled
output segmentation reflectance merging  label inside cluster segment

<Multi-viewed acquisition process without point cloud registration(scene2)>

7 different camera viewing direction with corresponding Cluster-wise Material labeled

normal-based segmentation reflectance merging segment

Uniform Surface Assumption!
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4. Two-stream Material Recognition Network with Gradual CNN

RNN structure with conditional update gate

Feature vector concatenation

Partial Skiprnn cell

(a) Partial Skiprnn (Lee et al.)
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4. Two-stream Material Recognition Network with Gradual CNN

Wavenet: A generative model for raw audio

RNN structure with conditional update gate
Oord et al. 2016 Deep-Mind

» 4

CNN structure with gradually increasing kernel size Bilinear cnn models for fine-grained visual

recognition
Lin et al. 2015 International Conference on Computer Vision(ICCV)
Feature vector concatenation
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Feature vector multiplication

Partial Skiprnn cell 7 Material Classes Color-based CNN stream
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(a) Partial Skiprnn (Lee et al.) (b) Gradual Increasing CNN (Ours) (c) Two-stream network structure (Ours)




Result

3D Segment-wise Material Recognition
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Two-stream Material Recognition Network with Gradual CNN

<Performance Growth>

Reflectance-only 64.67%
Color + Reflectance 76.00%
i Fusion Top-5
Netwerk Method Data Accuracy
Skl]}RNN I_25] - 616?.1;55
Partial SkipRNN [25] - Ref 04.67418
ef.
Gradual 1D CNN 72.66, 45
Dilated 1D CNN - 68.67+,8
SkipRNN + DenseNet-121 [25] 74.67 454
. _ Concat.
Partial SkipRNN + DenseNet-121 [25] Ref 76.0044 9
Partial SkipRNN + DenseNet-121 + 83.34,,-
Gradual 1D CNN + DenseNet-121 Quter | Color | g¢ 00,44
product
Dilated 1D CNN + DenseNet-121 83.334¢4
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Two-stream Material Recognition Network with Gradual CNN

<Performance Growth>
Up to 10% of performance growth

Reflectance-only 64.67% » 72.66%
Color + Reflectance 76.00% o> 86.00%
i Fusion Top-5
Netwerk Method Data Accuracy
Skl]}RNN I_25] - 616?.1;55
Partial SkipRNN [25] - Ref 64.6741.8
ef.
Gradual 1D CNN 72.66, 45
Dilated 1D CNN - 68.67+,8
SkipRNN + DenseNet-121 [25] 74.67 454
. _ Concat.
Partial SkipRNN + DenseNet-121 [25] Ref 76.0044 9
Partial SkipRNN + DenseNet-121 + 83.34,,-
Gradual 1D CNN + DenseNet-121 Quter | Color | g¢ 00,44
product
Dilated 1D CNN + DenseNet-121 83.334¢4
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