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 Dimensionality reduction (DR) often serves as a 
preprocessing step, e.g., for linear classification.
 The DR’s purpose is to ensure that the subsequent 

component can function robustly.
 The robustness of a DR itself is rarely questioned:

 Consider 2 random data splits (DS□) from MNIST into
50k training and 10k validation samples.
 GerDA results – 2D feature representations:

 Dealing with more than 2 scatter plots:
 align as similar as possible
 state average scatter plot similarity 𝛾̅𝛾∗

Introduction1

 We consider 2 related deep neural networks (DNN):

 The results support 2 recent claims:
 RBM pretraining adds robustness to a DNN [3].
 Robustness may be at odds with accuracy [4].
 The ReNDA results are reproducible and accurate.

Deep Neural Networks2

Robust Inter-cluster Structure3 Results and Conclusion4

Largely overlooked:

Reproducibility

References5

GerDA ReNDA Setup

𝛾𝛾 scatter plot similarity ≔ 𝛼𝛼 ⋅ 𝛽𝛽

𝛼𝛼 percentage of common triangles (see a, b)

𝛽𝛽 average percental triangle overlap (see c)
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 visualize by
stacking and
superimposing
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 Random
initialization
 ReLU

activation

 RBM
pretraining
 Sigmoid

activation

𝛾̅𝛾∗ 37.1
acc. 94.8

𝛾̅𝛾∗ 14.5
acc. 97.7

𝛾̅𝛾∗ 75.0
acc. 95.0

𝛾̅𝛾∗ 09.3
acc. 97.7
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GerDA Generalized Discriminant Analysis [1]

ReNDA Regularized Nonlinear Discr. Analysis [2]
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Reconstructions

Tied 
weights 

and 
biases

 ReNDA has a
deep autoencoder
architecture.
 It uses GerDA as the

encoder DNN.
 The decoder DNN

acts as a regularizer.
_______________________________

 ReNDA has been
shown to yield
reliably reproducible
2D feature
representations [2].
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 RBM
pretraining
 Sigmoid

activation

𝛾̅𝛾∗ 37.1
acc. 94.8

𝛾̅𝛾∗ 14.5
acc. 97.7

𝛾̅𝛾∗ 75.0
acc. 95.0

𝛾̅𝛾∗ 09.3
acc. 97.7

most robust

most accurate
least robust

still accurate
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Thank you
for your attention.

I am looking forward to
your feedback and

questions.
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