
Probability Guided Maxout
Claudio Ferrari, Stefano Berretti, Alberto Del Bimbo

Media Integration and Communication Center (MICC)
University of Florence



Motivation
• Fact: Deep CNNs tend to overfit the training data, because of the excessive co-adaptation of hidden

neurons. Regularization is essential to prevent such behavior.

• Observation 1: confident predictions (low entropy output distributions) are highly correlated with the
L2-norm of the descriptor, that is the penultimate layer before the classification layer.

• Observation 2: high L2-norm descriptors are characterized by highly-valued spikes.

• Idea: regularize the training process by penalizing overconfident output distributions.

• Solution: drop-out a fraction of most active neurons (correlated with low-entropy distributions),
proportionally to the predicted probability of the actual class.



Probability Guided Maxout



Probability Guided Maxout

Forward pass to estimate the output probability distribution (standard cross-entropy)

Given the ground-truth label (one-hot encoded) y, get the probability estimate of the ground-truth class.

1



Probability Guided Maxout

2

Estimate the percentage 𝜌 of units to drop with respect to Pgt

1. At beginning of training, predictions are equally distributed over the C classes à Pgt= 1/C

2. Confident predictions (large Pgt) should be penalized more;
3. Low values of Pgt indicate misclassifications; should be penalized less.



Probability Guided Maxout

3

Build the dropping mask and drop-out a percentage of highly active neurons.

1. Given a descriptor 𝑓 ∈ ℝ! build a binary mask 𝑀 ∈ 0,1 ! with the first 𝑝 = d𝜌 entries with value 0,

and the last 𝑑 − 𝑝 entries with value 1;
2. Sort values of 𝑓 in descending order, and apply the sorting permutation to 𝑀;

3. Drop-out the least active neurons as 2𝑓 = 𝑓 ⋅ 𝑀



Probability Guided Maxout

4

The final classification is performed using the masked descriptor.

NOTE:

1. Estimating the dropping mask (yellow arrows) does not require gradient computation;

2. Each sample in a mini-batch has its own dropping mask. Similar to dropout, the gradient is averaged
overall the samples, each one contributing w.r.t. non-zeroed parameters.



Maintaining the Expected Output
• To maintain the expected output consistent across training and inference, the inverted dropout

scheme works by multiplying the masked descriptor for a scale factor s = "
(" $ %)

.

• It works well for random dropout (high and low activations are dropped with equal probability).

• In our case, we drop only the most active nodes, which can lead to an imbalance.

• So, we modify the scale factor as s = '
(" $ %)

, with 𝛼 ≥ 1

• Choosing the right 𝛼 can be tricky, so we let the network learn the parameter 𝛼

CIFAR100



Experimental Results
• Experiments are conducted with a ResNet-18 on CIFAR10, CIFAR100, and Caltech256

Effect of the learnable scale parameter (CIFAR100)

Results on Benchmark datasets



Experimental Results
• Experiments are conducted with a ResNet-18 on CIFAR10, CIFAR100, and Caltech256

Effect of the learnable scale parameter (CIFAR100)

Results on Benchmark datasets



Experimental Results
• Experiments are conducted with a ResNet-18 on CIFAR10, CIFAR100, and Caltech256

Effect of the learnable scale parameter (CIFAR100)

Results on Benchmark datasets



Experimental Results
• Experiments are conducted with a ResNet-18 on CIFAR10, CIFAR100, and Caltech256

Effect of the learnable scale parameter (CIFAR100)

Results on Benchmark datasets



Experimental Results
• Experiments are conducted with a ResNet-18 on CIFAR10, CIFAR100, and Caltech256

Effect of the learnable scale parameter (CIFAR100)

Results on Benchmark datasets



Thank You!
Code available at:

https://github.com/clferrari/probability-guided-maxout


