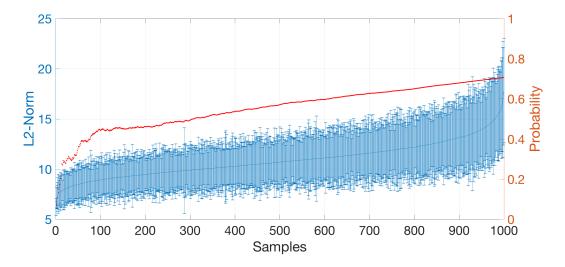


Claudio Ferrari, Stefano Berretti, Alberto Del Bimbo

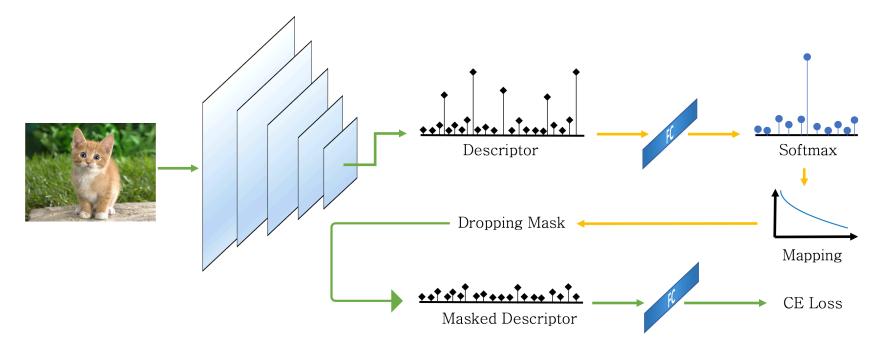
Media Integration and Communication Center (MICC) University of Florence

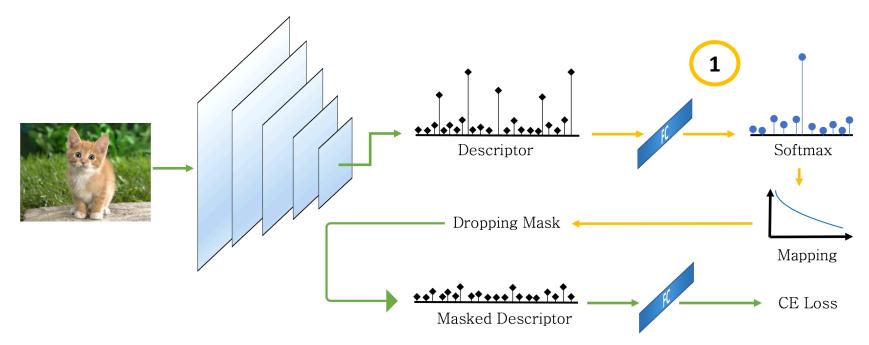
Motivation

- <u>Fact:</u> Deep CNNs tend to overfit the training data, because of the excessive co-adaptation of hidden neurons. Regularization is essential to prevent such behavior.
- <u>Observation 1:</u> confident predictions (low entropy output distributions) are highly correlated with the L2-norm of the descriptor, that is the penultimate layer before the classification layer.
- **Observation 2:** high L2-norm descriptors are characterized by highly-valued spikes.



- <u>Idea:</u> regularize the training process by penalizing overconfident output distributions.
- <u>Solution</u>: drop-out a fraction of <u>most active</u> neurons (correlated with low-entropy distributions), <u>proportionally</u> to the predicted probability of the actual class.



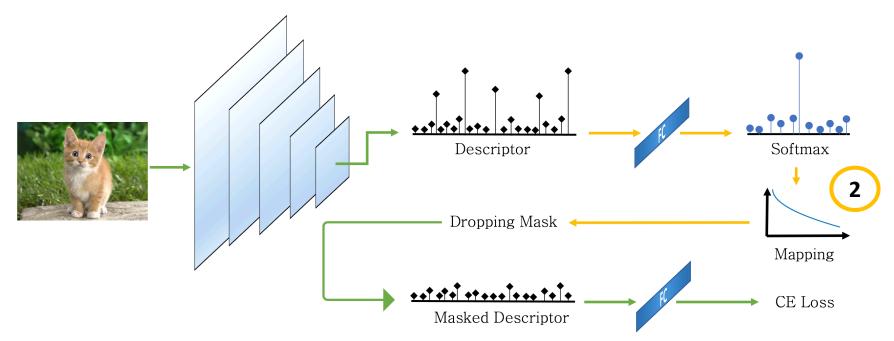


Forward pass to estimate the output probability distribution (standard cross-entropy)

$$\hat{\mathbf{y}} = rac{\exp\left(\mathcal{F}(\mathbf{x})
ight)}{\sum_{j=1}^{C}\exp\left(\mathcal{F}(\mathbf{x}_{j})
ight)}$$

Given the ground-truth label (one-hot encoded) y, get the probability estimate of the ground-truth class.

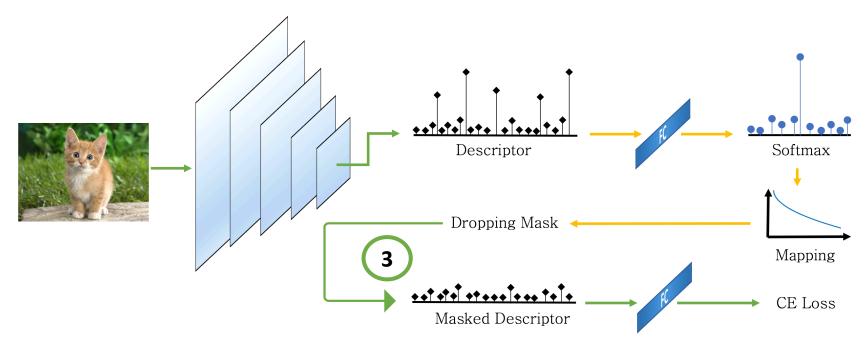
$$P_{gt} = \mathbf{y} \cdot \mathbf{\hat{y}}$$



Estimate the percentage ρ of units to drop with respect to P_{gt}

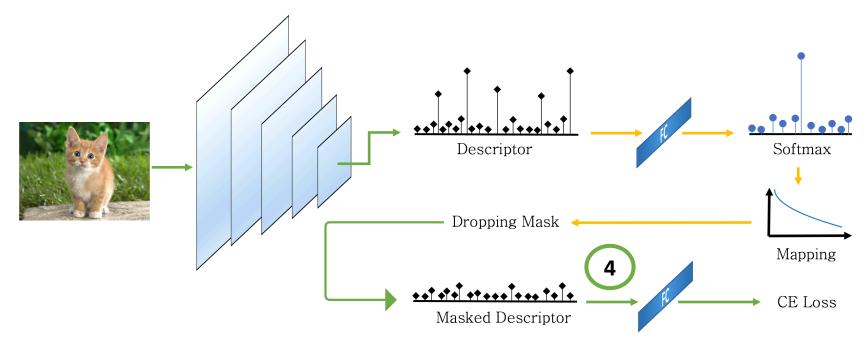
- 1. At beginning of training, predictions are equally distributed over the C classes $\rightarrow P_{gt} = 1/C$
- 2. Confident predictions (large P_{gt}) should be penalized more;
- 3. Low values of P_{gt} indicate misclassifications; should be penalized less.

$$\rho(x) = \gamma x; \quad x \in [0, 1] \qquad \gamma = \frac{1}{2}$$



Build the dropping mask and drop-out a percentage of highly active neurons.

- 1. Given a descriptor $f \in \mathbb{R}^d$ build a binary mask $M \in \{0,1\}^d$ with the first $p = d\rho$ entries with value 0, and the last d p entries with value 1;
- 2. Sort values of f in descending order, and apply the sorting permutation to M;
- 3. Drop-out the least active neurons as $\hat{f} = f \cdot M$



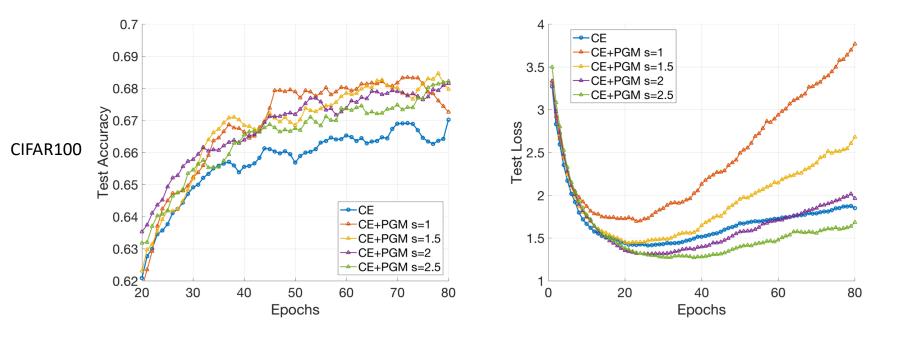
The final classification is performed using the masked descriptor.

NOTE:

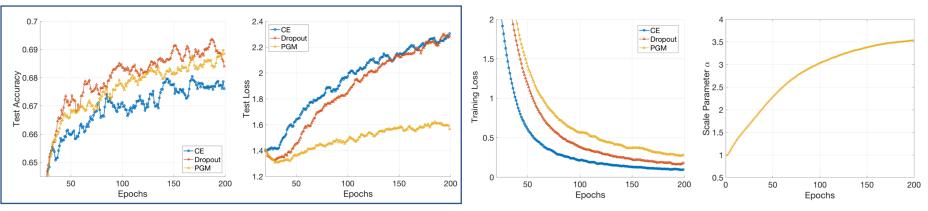
- 1. Estimating the dropping mask (yellow arrows) does not require gradient computation;
- 2. Each sample in a mini-batch has its own dropping mask. Similar to dropout, the gradient is averaged overall the samples, each one contributing w.r.t. non-zeroed parameters.

Maintaining the Expected Output

- To maintain the expected output consistent across training and inference, the *inverted dropout* scheme works by multiplying the masked descriptor for a scale factor $s = \frac{1}{(1-\rho)}$.
- It works well for random dropout (high and low activations are dropped with equal probability).
- In our case, we drop only the most active nodes, which can lead to an imbalance.
- So, we modify the scale factor as $s = \frac{\alpha}{(1-\rho)}$, with $\alpha \ge 1$
- Choosing the right α can be tricky, so we let the network learn the parameter α



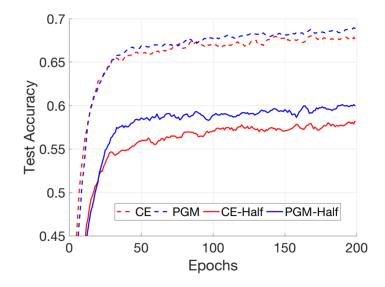
• Experiments are conducted with a ResNet-18 on CIFAR10, CIFAR100, and Caltech256



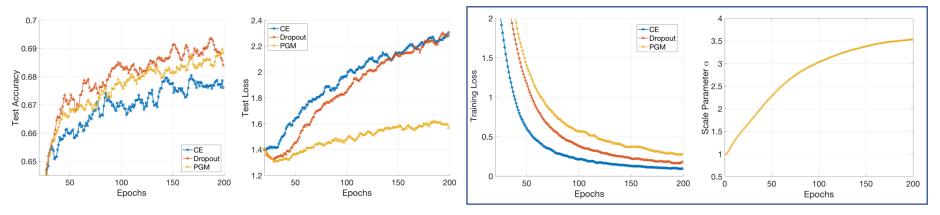
Effect of the learnable scale parameter (CIFAR100)

Results on Benchmark datasets

Dataset	Method	Rank-1 Acc	Test Loss
CIFAR10	CE	99.69	0.006
CIFAR10	Dropout	99.71	0.003
CIFAR10	PGM	99.73	0.02
CIFAR100	CE	68.47	2.07
CIFAR100	Dropout	69.65	2.21
CIFAR100	PGM	69.18	1.5 2
Caltech256	CE	62.21	2.28
Caltech256	Dropout	61.61	2.30
Caltech256	PGM	63.24	1.85



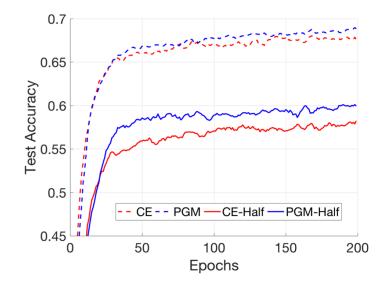
• Experiments are conducted with a **ResNet-18** on **CIFAR10**, **CIFAR100**, and **Caltech256**



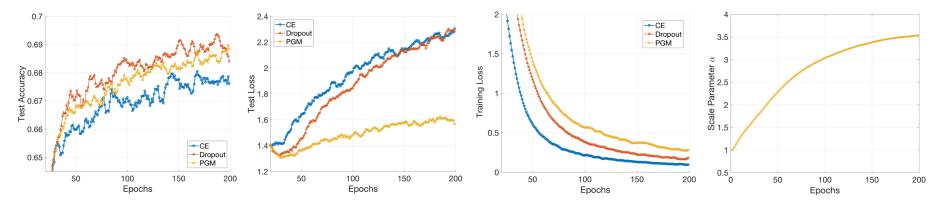
Effect of the learnable scale parameter (CIFAR100)

Results on Benchmark datasets

Dataset	Method	Rank-1 Acc	Test Loss
CIFAR10	CE	99.69	0.006
CIFAR10	Dropout	99.71	0.003
CIFAR10	PGM	99.73	0.02
CIFAR100	CE	68.47	2.07
CIFAR100	Dropout	69.65	2.21
CIFAR100	PGM	69.18	1.5 2
Caltech256	CE	62.21	2.28
Caltech256	Dropout	61.61	2.30
Caltech256	PGM	63.24	1.85



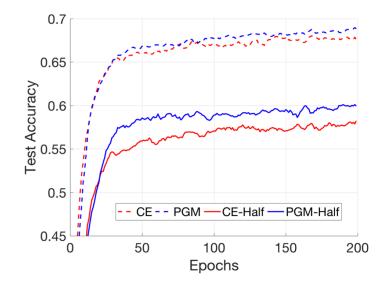
• Experiments are conducted with a **ResNet-18** on **CIFAR10**, **CIFAR100**, and **Caltech256**



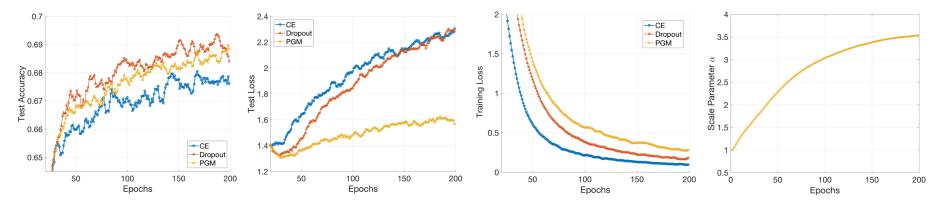
Effect of the learnable scale parameter (CIFAR100)

Results on Benchmark datasets

Dataset	Method	Rank-1 Acc	Test Loss
CIFAR10	CE	99.69	0.006
CIFAR10	Dropout	99.71	0.003
CIFAR10	PGM	99.73	0.02
CIFAR100	CE	68.47	2.07
CIFAR100	Dropout	69.65	2.21
CIFAR100	PGM	69.18	1.52
Caltech256	CE	62.21	2.28
Caltech256	Dropout	61.61	2.30
Caltech256	PGM	63.24	1.85



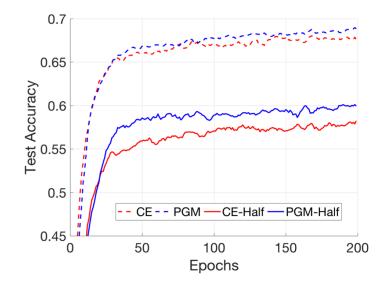
• Experiments are conducted with a **ResNet-18** on **CIFAR10**, **CIFAR100**, and **Caltech256**



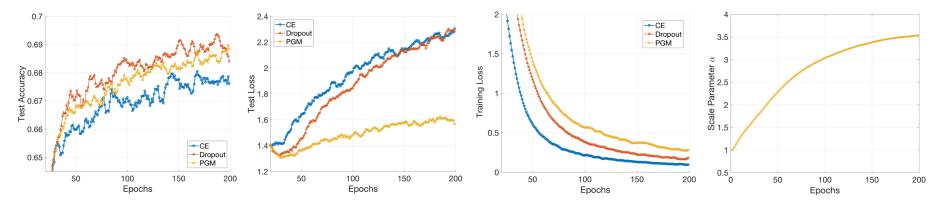
Effect of the learnable scale parameter (CIFAR100)

Results on Benchmark datasets

Dataset	Method	Rank-1 Acc	Test Loss
CIFAR10	CE	99.69	0.006
CIFAR10	Dropout	99.71	0.003
CIFAR10	PGM	99.73	0.02
CIFAR100	CE	68.47	2.07
CIFAR100	Dropout	69.65	2.21
CIFAR100	PGM	69.18	1.5 2
Caltech256	CE	62.21	2.28
Caltech256	Dropout	61.61	2.30
Caltech256	PGM	63.24	1.85



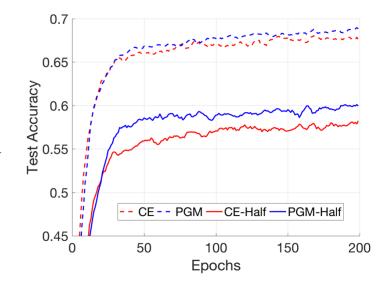
• Experiments are conducted with a **ResNet-18** on **CIFAR10**, **CIFAR100**, and **Caltech256**



Effect of the learnable scale parameter (CIFAR100)

Results on Benchmark datasets

Dataset	Method	Rank-1 Acc	Test Loss
CIFAR10	CE	99.69	0.006
CIFAR10	Dropout	99.71	0.003
CIFAR10	PGM	99.73	0.02
CIFAR100	CE	68.47	2.07
CIFAR100	Dropout	69.65	2.21
CIFAR100	PGM	69.18	1.5 2
Caltech256	CE	62.21	2.28
Caltech256	Dropout	61.61	2.30
Caltech256	PGM	63.24	1.85



Thank You!

Code available at:

https://github.com/clferrari/probability-guided-maxout