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Abstract
This work concerns feature selection using supervised classification on high dimensional datasets. The classical
approach is to project data onto a low dimensional space and classify by minimizing an appropriate quadratic cost.
We first introduced a matrix of centers in the definition of this cost. Moreover, as quadratic costs are not robust
to outliers, we proposed instead to use an `1 cost (or Huber loss to mitigate overfitting issues). While control on
sparsity is commonly obtained by adding an `1 constraint on the vectorized matrix of weights used for projecting
the data, we propose to enforce structured sparsity. To this end we used constraints that take into account the matrix
structure of the data, based either on the nuclear norm, on the `2,1 norm, or on the `1,2 norm for which we provide
a new projection algorithm. We optimize simultaneously the projection matrix and the matrix of centers with a
tailored constrained primal-dual method. The primal-dual framework is general enough to encompass the various
robust losses and structured constraints and allows for a convergence analysis. We demonstrate the effectiveness
of this approach on three biological datasets. Our primal-dual method with robust losses, adaptive centers and
structured constraints does significantly better than classical methods, both in terms of accuracy and computational
time.

Problem statement: Minimization of the `1 loss
Let X be the m× d data matrix made of m line samples x1, . . . , xm that belong to the d-dimensional
space of features. Let Y ∈ {0, 1}m×k be the matrix of labels where k ≥ 2 is the number of clusters.
Projecting the data in lower dimension is crucial to be able to separate them accurately. Let W be the
d× k projection matrix, where k � d.

min
(W,µ)

‖Y µ−XW‖1 +
ρ

2
‖Ik − µ‖2F s.t. ‖W‖1 ≤ η (1)

where Ik denotes the order k identity matrix. An `2 regularization has been added in order to avoid
the trivial solution (W,µ) = (0, 0). We use the algorithmic setting described in [2].

A primal dual algorithm
Problem (1) is rewritten in the form of the saddle point problem:

min
(W,µ)

sup
Zi,j∈[−1,1]

Z · (Y µ−XW ) +
ρ

2
‖Ik − µ‖2F s.t. ‖W‖1 ≤ η (2)

which can be solved by a primal-dual algorithm as studied in [2] (Algorithm 1)

Algorithm 1 Primal-dual algorithm, `1 loss.
1: Input: X, Y,N, σ, τ, τµ, η, ρ, µ0,W0, Z0
2: for n = 1, . . . , N do
3: Wold := W ; µold := µ
4: W := proj`1(W + τ · (XTZ), η)

5: µ := 1
1+τµ·ρ(µold + ρ · τµIk − τµ · (Y TZ))

6: Z := Z + σ · (Y (2µ− µold)−X(2W −Wold)))
7: Z := max(−1,min(1, Z)))
8: end for
9: Output: W,µ

The convergence condition on the step-sizes τ , τµ and σ are given in [1]). The drawback of the term
‖Y µ − XW‖1 is that it enforces equality of the two matrices out of a sparse set. In order to soften
this behaviour, we use the Huber function instead of the `1 norm. In the algorithm, it simply consists
in replacing line 7 with the appropriate “prox”, in this case we divide Z in the expression at line 7
with 1 + σε for a small parameter ε > 0 before truncating at −1 and 1.

Group LASSO constraint
Group LASSO was first introduced in [3]. The main idea is to enforce parameters of different classes
to share common features. Group sparsity reduces so complexity by eliminating entire features. It
consists in using the `2,1 norm for the constraint on W , which is defined as follows. The rowwise `2,1
norm of a d× k matrix W (whose rows are denoted wi, i = 1, . . . , d) is

‖W‖2,1 :=
d∑
i=1

‖wi‖2. (3)

Projecting a matrix w on this ball is easy as it amount to project first the norms of the rows (‖wi‖)i
on the `1 ball of radius η to obtain radii (ri) with

∑
i ri ≤ η, and then each row wi of w on the `2

ball of radius ri. In order to solve Problem (1) with this new constraint, we simply replace at line 4
of Algorithm 1 the projection onto the `1 ball with the appropriate modified projection.

Exclusive LASSO constraint
Exclusive sparsity or exclusive LASSO was first introduced in [4]. The main idea is that if one feature
in a class is selected (large weight), the method tends to assign small weights to the other features
in the same class. So given a d × k matrix V , the projection on the corresponding balls consists in
finding a matrix W which solves

min
W

∑
i,j

|wi,j − vi,j|2 s.t.
∑
i

∑
j

|wi,j|

2

≤ η2.

Our approach is to introduce a Lagrange multiplier for the constraint and then compute it by a variant
of Newton’s method.

Algorithm 2 Projection on the `1,2 ball.
Input: V, η, N
for i = 1, . . . , d do

Sort in decreasing order |v(i, :)|
for j = 1, . . . , k do
Si,j :=

∑j
l=1 |vi,j|

end for
end for
λ = maxp∈{1,...,k}

(
1
η

√∑
i S

2
i,p − 1

)
/p

pi = argmaxpi∈{1,...,k} Si,pi/(1 + λpi)

if
∑d
i=1

(
Si,pi
1+λpi

)2
≤ η2, terminate

for n = 1, . . . , N do

λ := λ +

∑d
i=1

(
Si,pi
1+λpi

)2
−η2

2
∑d

i=1 pi

(
Si,pi

)2

(1+λpi)
3

for i = 1, . . . , d do
pi := argmaxpi∈{1,...,k}

Si,pi
1+λpi

.

end for
end for
δi = λ

Si,pi
1+λpi

Output: wi,j = (|vi,j| − δi)+sign(vi,j)

Results and comparison of methods
Ovarian proteomic dataset is available on UCI database consists of mass-spectra obtained with the
SELDI technique. The dataset is composed of 216 samples, 15000 features and two clusters. Lung pro-
teomic dataset were collected using unbiased liquid chromatography/mass spectrometry. The dataset
is comprised of 1005 patients (469 among them with lung cancer and 536 control patients), and 2944
features and and two clusters. Zeiseil is a Single cell dataset composed of 3005 cells, 7364 genes and
k = 9 clusters.

Methods `1 Huber (µ = I) Huber Froben.
Ovarian 90.% 95.83% 98.61% 90.7%

Lung 66% 72.1% 76.6% 70.2 %
Zeisel 79.6% 94.2% 95.5% 94.2 %

The table above shows the improvement in accuracy on all biological datasets when using Huber loss
instead of `1 or Frobenius loss; `1 loss suffers from overfitting while Frobenius loss is not robust
enough. Optimizing the matrix of centers (v.s. fixing µ = I) also improves accuracy on the three
datasets.

d 1000 3000 5000 10000 15000
Primal-dual 0.025 0.12 0.205 0.42 0.63

Fista 0.075 0.481 1.16 4.62 10.6
ADMM 0.65 4.52 58 NC NC

The second table and the leftmost figure above shows that computational time as a function of the
number of samples m is linear both for primal-dual and FISTA and that the computational time of
ADMM is one or order of magnitude greater than the others because of the linear algebra involved.
The figure on the rightshows computational time as a function of the number of features: primal-
dual scales much more favorably than FISTA wrt. the number of features (a key issue for biological
datasets for which the number of genes is large)

The figure on the left shows that for small k the projection cost on the nuclear constraint is similar to
the projection cost on the `2,1 ball. The projection cost on the `2,1 ball with our method outperforms
the bisection method. On the right, the cost of the projection on the `1,2 ball is shown to grow linearly
with d and k, and is slightly higher than for the projection on the `1 ball.
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