

Deep Learning on Active Sonar Data Using Bayesian Optimization for Hyperparameter Tuning

Henrik Berg Karl Thomas Hjelmervik

ICPR 2020

Deep neural networks

- Neural networks with many layers
- Pros:
 - Powerful
 - Can discover features on their own, layer by layer
- Cons:
 - Need vast amounts of data for training
 - Prone to overfitting
 - Used to be difficult to train (and still computationally intensive)
 - Large amount of tunable hyperparameters

Hyperparameter Tuning

- Large number of hyperparameters
 - Number of layers, number of nodes in each layer, activation functions, dropout rates, etc
- Three different approaches:
 - Trial and Error
 - Searching the parameter space (exhaustively or randomly)
 - A more intelligent search
- Bayesian optimization:
 - Fit a function to some target function
 - (target function = ability to train a good network with given hyperparameters)
 - Initialize with random sampling
 - Iteratively improve fitting by sampling...
 - ...promising areas
 - ...uncertain areas

Bayesian optimization

- Tested different combinations of evaluation strategies and data sets
- 36 combinations, 10 runs of Bayesian Optimization per combination
 - Total run time: approx. 4 days, 2 x 8 TITAN V GPUs
- Finally, 20 deep nets were trained for each run
- Results tested on an independent test set

Data

- A few thousand echoes recorded during three experiments in 2002 (PTE01, DOP03, CEX02)
- Area contained four pipelines (242 echoes)
- All echoes were semi-manually classified in advance
- Training and validation: PTE01 and CEX02
 - Three copies of each pipeline echo
 - Same number of echoes sampled from non-pipelines
 - PTE01 = 264 pipelines and 264 non-pipelines
 - CEX02 = 243 pipelines and 243 non-pipelines
- Test set: DOP03
 - Not modified in any way, and not used during training
 - 73 pipelines and 2593 non-pipelines

Forsvarets forskningsinstitutt

Forsvarets forskningsinstitutt

Analysing the hyperparameters

Concluding remarks

- «Trial and Error» can work, but a more intelligent search can yield significantly better results
- The most sensitive parameter was choice of training set
 - PTE01 vs CEX02 which set was most similar to the test set, DOP03?
 - Good data sets, and thorough understanding of the data, is important!