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Motivation

CNNs are ubiquitous in computer vision.
However, they require considerable resources in terms of

- Computation

- Memory

Compression techniques can partially handle these issues at the price of a
drop in performance.
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Goal & Contribution

In order to overcome the shortcomings of existing methods (namely, a drop in
performance after model compression) we propose a novel pipeline which
leverages Resource-aware optimization and Privileged Information (PI)

- Resource-aware optimization breaks down the network in smaller
instances with different compression needs

- Privileged Information (PI) is provided during training in the form of extra
supervision in a teach-student framework
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Overview of the method
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Background

We build on MorphNet [1] whose training procedure optimizes CNN's structure.

Its compression strategy relies on a regularizer, which induces sparsity in activations
by pruning neurons with greater cost C. Network sparsity is measured by the batch
normalization scaling factor y associated to each neuron.

The cost C can bg either assqciated Criop — i[cfn C(WF2 %Ok SE

to neurons contributing to either =1

FLOPs or size (number of K

parameters). CpARAM = Z[Cfn « (w2« C*

out
k=1

[1] A. Gordon, E. Eban, O. Nachum, B. Chen, H. Wu, T.-J. Yang, and E. Choi, “Morphnet: Fast & simple resource-constrained structure learning of deep
networks,” CVPR 2018
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Leveraging privileged information

H
™) =

min min —

0, 0 (1 =Ny, o(f(x*,01,02)/T))

S 2" = o (fi(x")/T)

+A (2", o(fi(x",01,02)/T))
+a (Crrop(01) + Cparan(02))]

While being compressed, the
network tries to mimic the
predictions of the uncompressed
network

===p FLOPs Optimizer
==:p Model-Parameters Optimizer

Resource-aware optimization
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Resource-aware optimization

N K
min min 1 S = NI o(f(ah,01,602)/T)) Crror = Y _[Ch, * (W*)?* Ch,, + S5,/]
1 2 i—=1 k=1
A2 o(fe(x,61,05)/T)) K ) o
—+« (CFLOP(gl) + CPARAM(QQ))] CrARAM = Z[Cm * (w ) * Cout]
k=1

0, U0y =0, N0y = @ is a partition of the weights

Lower layers carry higher FLOPs, while higher layers account more for model-size.

Therefore we propose a configuration in which the lower half of the
network is optimized for FLOPs and the upper half is optimized for size.
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Results on Cifar-100
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Conclusion

In this paper, we present a resource-aware network structure learning method,
which enables suitable optimization in different sections of the seed network
considering FLOPs and model-parameters constraints - i.e. lower layers are optimized
for FLOPs and higher layers for model-parameters.

Furthermore, our method leverages privileged information to impose control over
predictions to preserve high-quality model performance.

Our method brings state of the art network compression that outperforms the
existing method by a large margin while maintaining better control over the
compression-performance tradeoff.

_ ICPR 2020 - Paper ID 1804



