b

Matching of Matching-Graphs
 A Novel Approach for Graph Classification

Mathias Fuchs, Kaspar Riesen
10.12.2020

Graphs and Graph Matching

- A Graph consists of a set of nodes and a set of edges. Both of them can contain additional attributes.

c

- Graphs are a versatile alternative to feature vectors
- Various graph matching procedures have been proposed over the years
- Graph Kernels
- Spectral Methods
- Graph Edit Distance
- Graph Convolutional Neural Networks

\boldsymbol{u}^{b}

Graph Edit Distance Definition

- Given two graphs g_{1} and g_{2}, the basic idea of graph edit distance is to transform g_{1} into g_{2} using some edit operations
- Default set of edit operations
- Insertion: A node is inserted. Denoted as $(\varepsilon \rightarrow v)$, where v is the inserted node.
- Deletion: A node is deleted. Denoted as $(u \rightarrow \varepsilon)$, where u is the deleted node.
- Substitution: A node is substituted with another node. Denoted as $(u \rightarrow v)$, where u is a node of g_{1} and v a node of g_{2}
- Similarly for edge edit operations

Graph Edit Distance

Example

The corresponding edit path is $=\{0 \rightarrow 0,1 \rightarrow 1,2 \rightarrow 2,3 \rightarrow 3,4 \rightarrow 4,5 \rightarrow \varepsilon, \varepsilon \rightarrow 5, \varepsilon \rightarrow 6, \varepsilon \rightarrow 7\}$

\boldsymbol{u}^{b}

Matching-Graphs

Idea

- The general idea is to build a small set of graphs, that represent a certain class.
- This is done by formalizing the information of a given edit path between two graphs g_{i} and g_{j} in a new data structure, called the matching-graph $m_{g_{i} \times g_{j}}$.
- For each edit path $\lambda\left(g_{i}, g_{j}\right)$, two matching-graphs $m_{g_{i} \times g_{j}}$ and $m_{g_{j} \times g_{i}}$ are eventually built (for the source and the target graph g_{i} and g_{j}, respectively)

Matching-Graphs

Example

Based on the example from before:

With the edit path $=\{0 \rightarrow 0,1 \rightarrow 1,2 \rightarrow 2,3 \rightarrow 3,4 \rightarrow 4,5 \rightarrow \varepsilon, \varepsilon \rightarrow 5, \varepsilon \rightarrow 6, \varepsilon \rightarrow 7\}$

$m_{g_{i} \times g_{j}}$ (unpruned)

$m_{g_{i} \times g_{j}}($ pruned $)$

Method

How can we use these matching-graphs to improve the distance calculation between two graphs?

Train

Class A Class E

Train

Class A Class E

\square
\square
Matching Matching Graphs A Graphs E

Datasets
 Letter

15 Classes: A,E,F,H,I,K,L,M,N,T,V,W,X,Y,Z

Datasets

Aids

Two classes: confirmed active and confirmed inactive

Datasets

Mutagenicity

Two classes: mutagen and non-mutagen

Results

	$k-\mathrm{NN}\left(d_{\mathrm{BP}}\right)$	$k-\mathrm{NN}\left(d_{\mathrm{M}}\right)$	
Data Set		Unpruned	Pruned
Letter	90.5	91.3	$93.1 \circ$
AIDS	99.0	$99.7 \circ$	$99.7 \circ$
Mutagenicity	70.6	70.0	70.5

Conclusion

- Proposal to use matching-graphs, that are pre-computed on training graphs, to improve graph classification.
- These matching-graphs leverage the information provided by the edit path between two graphs
- Initial experiments show promising results.

Future work

- Other graph based matching-graph representations
- Combine the matching-graphs with different classifiers
- Quantitative analysis of the produced matching-graphs

