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Graphs and Graph Matching b
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e A Graph consists of a set of nodes and a set of edges. Both of them can contain additional
attributes.

. N

e Graphs are a versatile alternative to feature vectors

e Various graph matching procedures have been proposed over the years
Graph Kernels

Spectral Methods

Graph Edit Distance

Graph Convolutional Neural Networks
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Graph Edit Distance b
Definition

e Given two graphs g; and g-, the basic idea of graph edit distance is to transform g, into g
using some edit operations
e Default set of edit operations
e Insertion: A node is inserted. Denoted as (¢ — v), where v is the inserted node.
e Deletion: A node is deleted. Denoted as (u — €), where u is the deleted node.
e Substitution: A node is substituted with another node. Denoted as (u — v), where u is a node of g;
and v a node of g2
e Similarly for edge edit operations



Graph Edit Distance b
Example

e

The corresponding edit pathis = {0 - 0,1 - 1,2 -+ 2,3 -+ 3,4 > 4,5 5> e, > 5,6 = 6,6 = T}
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Matching-Graphs
ldea

e The general idea is to build a small set of graphs, that represent a certain class.

e This is done by formalizing the information of a given edit path between two graphs g; and g;
in a new data structure, called the matching-graph m,, ..

e For each edit path A(g;, g;), two matching-graphs m,, «,, and my, «,, are eventually built (for
the source and the target graph g; and g;, respectively)
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Matching-Graphs b

Example

Based on the example from before: ﬁ : )

With the edit path = {0 - 0,1 - 1,2 -+ 2,3 - 3,4 - 4,5 > e, = 5,6 = 6,6 = T}

Mg, xg; (unpruned) Mg, xg; (pruned)
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How can we use these matching-graphs to improve the distance calculation between two graphs?
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Datasets R

Letter

15 Classes: A,E,FH,LK,.LLM,N,TV,W,X,Y,Z
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Datasets P

Aids

Two classes: confirmed active and confirmed inactive



Datasets R

Mutagenicity

Two classes: mutagen and non-mutagen
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k-NN(dgp) k-NN(dy)
Data Set Unpruned Pruned
Letter 90.5 91.3 93.10
AIDS 99.0 99.7 o 99.7 o
Mutagenicity 70.6 70.0 70.5
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e Proposal to use matching-graphs, that are pre-computed on training graphs, to improve graph
classification.

e These matching-graphs leverage the information provided by the edit path between two graphs
e [nitial experiments show promising results.
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e Other graph based matching-graph representations
e Combine the matching-graphs with different classifiers
e Quantitative analysis of the produced matching-graphs



