25th International Conference on Pattern Recognition

End-to-end Deep Learning Methods for Automated Damage Detection in Extreme Events at Various Scales

Yongsheng Bai^{1,2} Halil Sezen² Alper Yilmaz¹

¹ Photogrammetric Computer Vision Lab, The Ohio State University, Columbus, USA

² Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, USA

Scene level (scale) problem in cracking detection:

(a) pixel level

(b) object level

(c) structural level

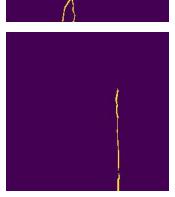
Three scene levels (scales)

Can we find a deep learning method to detect cracks automatically and successfully on 2D images at various scene levels or scales?

Data preparation for training:

Pixel level

2,021 images with the size from 168 × 300 to 4600 × 3070 and with three scales are lablled.



label

Object level

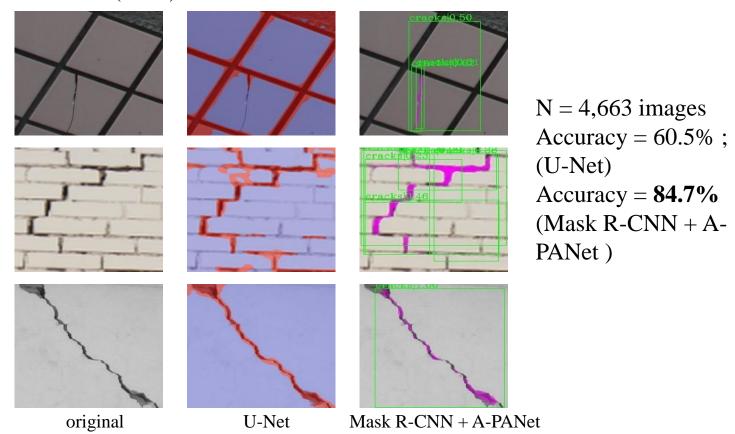
Structural level

Frameworks of proposed networks:

- 1. Basic network: Mask R-CNN
- 2. Mask R-CNN with Path Aggregation Network (PANet) and Spatial Attention Mechanisms (Mask R-CNN + A-PANet)
- 3. Mask R-CNN with High-resolution Network (Mask R-CNN + HRNet)

Implementation:

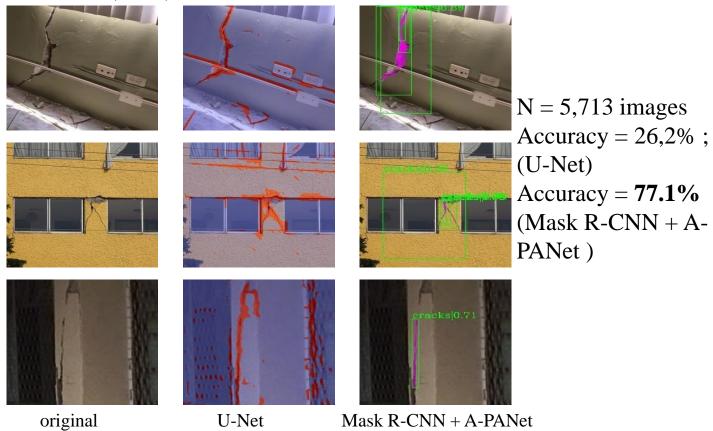
2.1) Pixel scene level (scale) Task in Phi-Net:



Some correct predictions of U-Net and Mask R-CNN + A-PANet at pixel level

Implementation:

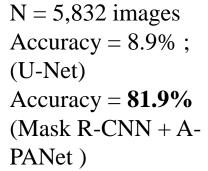
2.2) Object scene level (scale) Task in Phi-Net:

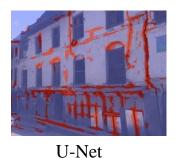


Some correct predictions of U-Net and Mask R-CNN + A-PANet at object level

Implementation:

2.3) Structural scene level (scale) Task in Phi-Net:





original U

Mask R-CNN + A-PANet

Some correct predictions of U-Net and Mask R-CNN + A-PANet at structural level

THE OHIO STATE UNIVERSITY

3. Testing on the Other Two Datasets:

3.1) Testing on 2017 Mexico City earthquake images (4,136):

Methods	Accuracy	Recall	Precision
Mask R-CNN + A-PANet	70.6%	53.6%	92.9%
Mask R-CNN + HRNet	73.0%	62.7%	90.5%

Mask R-CNN + HRNet

Mask R-CNN + A-PANet

Prediction of Mask R-CNN with Attention PANet and HRNet for 2017 Mexico City earthquake images

3.2) Testing on 2017 Pohang earthquake images (4,109):

Methods	Accuracy	Recall	Precision
Mask R-CNN + A-PANet	74.1%	56.9%	94.7%
Mask R-CNN + HRNet	74.0%	63.6%	88.3%

original

Mask R-CNN + HRNet

Mask R-CNN + A-PANet

Prediction of Mask R-CNN with Attention PANet and HRNet for 2017 Pohang earthquake images

Discussion and conclusion

- With appropriate training data, end-to-end deep learning methods like the latest Mask R-CNN which can detect cracks at various scale precisely are possible.
- 2. We still need to collect more data for counteracting the imbalance among training data and finding a way to speed up the prediction for high-resolution images.
- 3. We plan to try other networks in future.

Thank you!