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Vehicle Classification Problem

Goal: Classify vehicles from point clouds in two configurations

Non-metric configuration Metric configuration



State of the art: VoxNet

CNN with 3-dimensional 
convolutional layers
Advantages
• Extraction of rich (shape) features
• Works in both configurations
Disadvantages
• Lack of metric information
• Low voxel resolution 

(16×48×16)
• High network complexity Voxelization



State of the art: VoxNet architecture
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State of the art: PointNet

CNN with pointwise convolutions
Advantages
• Extraction of metric features
• No resolution problem
• Low network complexity
Disadvantages
• Works in metric configuration only
• Can’t extract neighbourhood 

information well

Input:

which is unordered and 
with variable length !

!×3



State of the art: PointNet architecture
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Our proposal

where ! is the number of points,
" is the number of slices,
# = max()*,…,- !(, and 

!( is the number of points in the 
.-th slice.

!×3 "×#×2

A CNN which is able to extract 
metric information from 2 and 3
coordinates, and non-metric one 
over 4 axis

The input is modified from point 
cloud to structured point cloud, 
reordering it in a tensor of shape 
(number of slices) x (number of 
points per slice) x 2



Our proposal: SliceNet

Combination of PointNet and VoxNet
Advantages
• Extraction of metric features over !

and " axis
• Extraction of neighbour information 

over # axis
• Low network complexity
• Works in both configurations
Disadvantages
• In metric configuration #

coordinate is not exploited



Our proposal: SliceNet architecture

fc(k)

conv3x1(256), pool2x1 fc(128)

!×#×2

input

conv1x1x1(64)

!×128

max
pooling

⁄! 8 ×512 )

fc(512)
conv1x1x2(64)

conv3x1(128), pool2x1

conv3x1(512), pool2x1

!×#×128

output

1

van

*+ block , block classification



Our proposal: SliceNet GAP architecture

GAP
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Experiments: Datasets

# samples # classes (!)
Non-metric ∼6900 18

Metric ∼2500 8



Experiments: Results

Accuracy

Non-metric Metric

VoxNet 96.6 99.3

PointNet 96.7 99.4

SliceNet 97.2 99.4

SliceNet
GAP 97.1 99.2
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(a) Van, misclassified as truck.
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(b) Truck, misclassified as van.
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(c) Bus, misclassified as coach.
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(d) Coach, misclassified as bus.

Fig. 6: Some non-metric samples misclassified by SliceNet.

Fig. 7: Confusion matrix on metric dataset.

complexity, where we consider multiply-adds operations only.
Results are summarized in Tab. III.

TABLE III: Time and space complexity. Number of parameters
and floating-point operations (i.e. multiply-adds operations) of
one sample for each network. The ”M” stands for million.

network parameters FLOPs/sample

VoxNet 22.0M 3249M
PointNet 0.7M 287M
SliceNet 1.7M 34M
SliceNet-GAP 0.9M 33M

As expected, VoxNet is the most complex network in terms
of both time and space. In particular Voxnet is 11⇥ less
efficient having 31⇥ more parameters compared to PointNet.
While SliceNets have more or less the same number of param-
eters of PointNet, being more efficient than the competitors in
term of FLOPs/sample, namely 8⇥ and 95⇥ more efficient
than PointNet and VoxNet respectively.

These results confirm that SliceNets are very efficient,
as well as accurate, showing their suitability for real-time
applications.

D. Training Details

For all four networks, the weights are initialized as de-
scribed by Glorot et al. [21]. Regularization is provided
by dropout [19] and batch normalization [18]. In particular,
dropout is performed with rate 0.7 on all fully connected
layers except the last one. Conversely, batch normalization is
performed on all layers except the last one with initial decay
rate 0.5, then exponentially increased to 0.99 during training.
We choose Adam optimizer [22] with momentum 0.9 and
initial learning rate 0.0005, then exponentially decreased to
0.00001. Fixing the batch size to 128, training takes 1-2 hours
to converge with TensorFlow [23] on a Tesla K40c GPU.

V. CONCLUSION

This paper described SliceNets, a family of two convolu-
tional neural networks for 3D point-cloud classification. They
are specifically tailored to process point clouds obtained by
scanning vehicles along planes perpendicular to the driving
direction. The resulting point clouds can be metric or non-
metric, depending on sensors configurations; in the latter case
the slice coordinate is merely a temporal index.

SliceNets are able to extract metric information from the
spatial coordinates and neighborhood information from the
third one (either metric or temporal), thus being able to handle
both types of point clouds.

Experiments on metric and non-metric datasets showed that
SliceNets compares favourably with the competitors on both
accuracy and complexity. In particular, as expected, SliceNet
performs better than others on non-metric data, since it has
designed for that task, but it can also deal with metric
configuration with performances on par with the state-of-the-
art.

At last, SliceNet was ported on an embedded system for
real-time ETC.
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