MFI: Multi-range Feature Interchange for Video Action Recognition

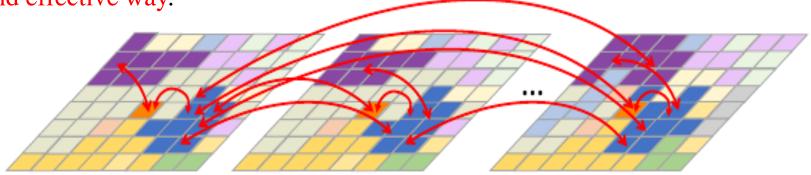
Sikai Bai (presenter), Qi Wang and Xuelong Li

School of Computer Science and Center for OPTical IMagery Analysis and Learning Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P. R. China

Self-introduction

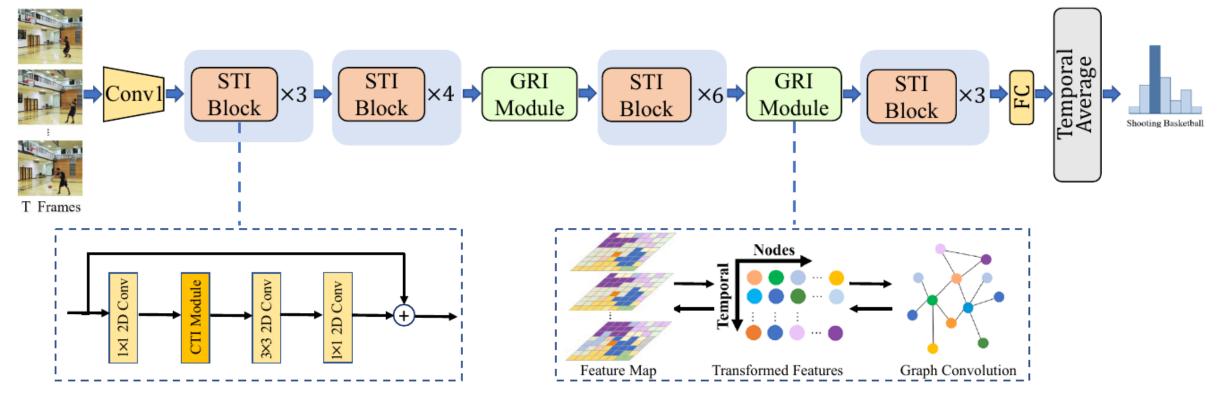
Sikai Bai, received the B.E. degree in software engineering from the China University Of Geosciences, Wuhan, 730074, Hubei, P. R. China, in 2018. He is currently pursuing the Master degree from school of Computer Science and Center for Optical Imagery Analysis and Learning, Northwestern Polytechnical University, Xi'an, China. His research interests include computer vision and pattern recognition.

Pipeline


- Motivations
- Our approach
- Experiments

Motivation

Short-range motion features and long-range dependencies are two complementary and vital cues.


It is still unclear how to capture temporal information on multiple ranges using an efficient and effective way.

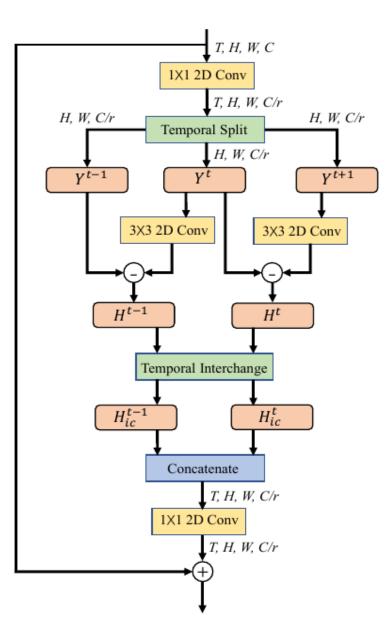
Regard short-range motion encoding and long-range dependency learning as the interchange between features in multiple ranges.

Our approach

Multi-range Feature Interchange for Video Action Recognition

Our approach

- Channel-wise Temporal Interchange (CTI)
 - Temporal difference.


 $H_{c}^{T} = Conv_{trans} \otimes Y_{c}^{t+1} - Y_{c}^{t}, \quad t \in [1, T-1].$

- Temporal interchange operation.
- Graph-based Regional Interchange (GRI)
 - Feature Transformation.

 $W_{t} = [Conv_{trans}]^{T}, \qquad W_{t} \in \mathbb{R}^{N \times L},$ $V_{t} = W_{t} * \Phi_{r}(X), \qquad V_{t} \in \mathbb{R}^{N \times C}.$

- Graph Convolution. $V_{out} = Re LU(F(V_t, A_g, W_g) + V_t)$
- Feature Reverse.

 $Y_{inv} = \varphi_r (W_t^T * V_{out})$

Experiments

Benchmark Comparison

Method	Backbone	#Frames	FLOPs	Val-Top1 (%)	Val-Top5 (%)	Method	#Frames	UCF101	HMDB51
TSN	BNInception	8	16G	19.5	-	Two-stream CNN	16+16	88.0	59.4
TSN	ResNet-50	8	33G	19.7	46.6	Two-stream TSN	8+8	94.2	69.6
MultiScale TRN	BNInception	8	16G	34.4	-	StNet	7	93.5	-
TSM	ResNet-50	8	33G	43.4	73.2	TSM	8	94.5	70.7
TSM	ResNet-50	16	33G	44.8	74.5	ECO	92	93.6	68.0
ECO_{8f}	BNInception+3D ResNet18	8	32G	39.6	-	STC-ReNeXt101	16	93.7	70.5
ECO_{16f}	BNInception+3D ResNet18	16	64G	41.4	-	ARTNet	16	94.3	70.9
I3D	3D ResNet50	32×2	$153G \times 2$	41.6	72.2	I3D-RGB	64	95.4	74.8
Non-Local-I3D	3D ResNet50	32×2	$168G \times 2$	44.4	76.0	Two-steam I3D	64+64	98.0	80.7
MFI(Ours)	ResNet-50	8	33.6G	43.9	73.9	MFI(Ours)	8	94.9	71.9
MFI(Ours)	ResNet-50	16	67.2G	45.5	76.0	MFI(Ours)	16	95.6	73.3

Experiments

Ablation Study

Model	#Frames	FLOPs	Param.	Acc.(%)
TSN	8	33G	24.3M	19.7
	16	66G	24.3M	19.9
ECO	16	64G	47.5M	41.4
I3D	32	306G	28.0M	41.6
TSM	8	33G	24.3M	43.4
1 5101	16	36G	24.3M	44.8
MFI	8	33.6G	24.6M	43.9
1411,1	16	67.2G	24.6M	45.5

MethodVal-Top1 (%)Val-Top5 (%)baseline(TSN)19.746.6GRI38.267.2CTI42.871.3MFI43.973.9

Moving something away from something

1. Moving something away from something (0.998) 2. Moving something across a surface without it falling down (0.001)

Moving something closer to something

1. Moving something closer to something (0.907) 2. Moving something and something closer to each other(0.071)

Pouring something into something

1. Pouring something into something (0.884) 2. Pretending to pour something out of something (0.092)

Pretending to put something into something

1. Pretending to put something into something (0.731) 2. Pretending to scoop something up with something (0.140)

Thank you for listening!

Sikai Bai Email: <u>whitesk1973@gmail.com</u> 2020-12-07