Segmentation of Axillary and Supraclavicular Tumoral Lymph Nodes in PET / CT: A Hybrid CNN / Component-Tree Approach

D. L. Farfan Cabrera, N. Gogin, D. Morland, B. Naegel, D. Papathanassiou, N. Passat
Université de Reims Champagne Ardenne, CReSTIC, EA 3804, 51097 Reims, France
General Electric Healthcare, Buc, France
Département de Médecine Nucléaire, Institut Godinot, Reims, France
Université de Strasbourg, CNRS, ICube, Strasbourg, France
Automatic axillary lymph node tumor segmentation in PET/CT

What are lymph nodes?

lymph nodes are the first organs reached by cancer

Patient with no breast cancer

Patient with breast cancer
Automatic axillary lymph node tumor segmentation in PET/CT

What are our contributions?

1st Contribution:
- Provide a prognostic factor for the staging of breast cancer

Cancer staging is determined by:
N: number of lymph nodes with cancer
T: tumor volume
M: metastasis state

Patient with no breast cancer

Patient with breast cancer
Brown fat shows up (due to exposure to cold)

- Brown fat has the same metabolism as tumor cells
- Brown fat generates false positives that can be mistaken by tumors

2nd Contribution:
- Help doctors to identify quicker false positive coming from brown fat
1. Data preprocessing

2. Component-tree extraction

3. Feature map generator

4. FCNN and component-tree fusion

5. 3D-FNCNN architecture

6. Segmentation results
Automatic lymph node tumor segmentation in PET/CT

2. Component-tree extraction

What is a component-tree?

- Each node is a connected component
- Root node contains all the image
- Follows a hierarchical structure according to gray levels
- Each tree level corresponds to a gray level
- Each node belongs to its ascendants nodes

Full image
Automatic lymph node tumor segmentation in PET/CT

2. Component-tree extraction
Automatic lymph node tumor segmentation in PET/CT

2. Component-tree extraction

For each node N_i, it is computed:

- $f1 \rightarrow G(N_i)$: mean gradient of node contour in PET
- $f2 \rightarrow H(N_i)$: mean HU value in CT
- $f3 \rightarrow S(N_i)$: standard deviation of H
- $f4 \rightarrow R(N_i)$: relative integral volume
- $f5 \rightarrow L(N_i)$: position with respect to the lungs
Automatic lymph node tumor segmentation in PET/CT

2. Component-tree extraction

Goal of these descriptors?

For each node N_i, it is computed:

- $f_1 \rightarrow G(N_i)$: mean gradient of node contour
 lymph node have high contour gradient

- $f_2 \rightarrow H(N_i)$: mean HU value in CT
 lymph nodes have positive HU value
 brown fat has negative HU value

- $f_3 \rightarrow S(N_i)$: standard deviation of H
 lymph nodes have low standard deviation

- $f_4 \rightarrow R(N_i)$: relative integral volume
 lymph nodes have high contrast with their neighbourhood

- $f_5 \rightarrow L(N_i)$: position with respect to the lungs
 lymph nodes are outside the lungs convex hull

We assign to each node 5 descriptors
Automatic lymph node tumor segmentation in PET/CT

3. Feature map generator

From feature vectors to feature volumes?

For each voxel x in the PET image, it is computed:

\[
\begin{align*}
G(x) &= \max_i G(N_i) & \text{lymph node have high contour gradient} \\
H(x) &= \text{mean}_i H(N_i) & \text{lymph nodes have positive HU value} \\
S(x) &= \min_i S(N_i) & \text{lymph nodes have low standard deviation} \\
R(x) &= \max_i R(N_i) & \text{lymph nodes have high contrast with their neighbourhood} \\
L(x) &= \text{or}_i L(N_i) & \text{lymph nodes are outside the lungs convexhull}
\end{align*}
\]

We assign to each voxel 5 descriptors.
Automatic lymph node tumor segmentation in PET/CT

4. CNN and component-tree fusion
5. CNN

3D U-Net PET-CT for LN tumor segmentation (2 encoders + 1 decoder)

Conv 3x3 Relu

Upconv 3x3 Relu

Maxpooling 3x3

Concatenation

Input PET

Input CT

Segmentation

Contour on PET

Contour on CT
6. Results

- **Training**: 201 tumors (42 PET/CT exams)
- **Validation**: 56 tumors
- **Patches for test**: 63 tumors (10 PET/CT exams)
- **Loss Function**: 1 - Dice
- **Iterations**: 1000

- **Type of CNN**: U-NET
- **Number of layers**: 3
- **Resolution**: 1.2mm³
- **3D Patch size**: 80 mm³

The diagram shows the comparison of baseline and proposed method for accuracy over epochs, with U-PET, U-PET-CT, and U-PET-CT-all as inputs.
Automatic lymph node tumor segmentation in PET/CT

6. Results

U-PET \rightarrow inputs \{PET\}
U-PET-CT \rightarrow inputs \{PET, CT\}
U-PET-CT-all \rightarrow inputs \{PET, CT, all feature maps\}

<table>
<thead>
<tr>
<th>3D CNN Model</th>
<th>DSC voxel</th>
<th>PPV voxel</th>
<th>SE voxel</th>
<th>DSC region</th>
<th>PPV region</th>
<th>SE region</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D U-Net (PET)</td>
<td>0.832703</td>
<td>0.827762</td>
<td>0.82478</td>
<td>0.798685</td>
<td>0.757925</td>
<td>0.890805</td>
</tr>
<tr>
<td></td>
<td>\pm 0.1327</td>
<td>\pm 0.1483</td>
<td>\pm 0.0868</td>
<td>\pm 0.1547</td>
<td>\pm 0.2206</td>
<td>\pm 0.0821</td>
</tr>
<tr>
<td>3D U-Net (PET-CT)</td>
<td>0.865896</td>
<td>0.844429</td>
<td>0.886527</td>
<td>0.871825</td>
<td>0.849864</td>
<td>0.926111</td>
</tr>
<tr>
<td></td>
<td>\pm 0.08</td>
<td>\pm 0.1034</td>
<td>\pm 0.0465</td>
<td>\pm 0.1312</td>
<td>\pm 0.1893</td>
<td>\pm 0.0628</td>
</tr>
<tr>
<td>3D U-Net (PET-CT-all)</td>
<td>0.867845</td>
<td>0.872781</td>
<td>0.896473</td>
<td>0.894624</td>
<td>0.851361</td>
<td>0.933135</td>
</tr>
<tr>
<td></td>
<td>\pm 0.1161</td>
<td>\pm 0.1425</td>
<td>\pm 0.0553</td>
<td>\pm 0.1431</td>
<td>\pm 0.1948</td>
<td>\pm 0.0756</td>
</tr>
</tbody>
</table>
6. Results

Proposed method removes false positives coming from brown fat

Results shown on the PET/CT fusion images
Automatic lymph node tumor segmentation in PET/CT

6. Results

Proposed method separates visually connected tumors

Results shown on the PET/CT fusion images

false positive joined contours separated contours

U-PET U-PET-CT (baseline) U-PET-all (proposed method)
Thank you for your attention

mail: diana.lucia.farfan@gmail.com
page: linkedin.com/dianafarfan