

Coronal PET AC TOF	8 50	R24 R24	Coronal PET AC TOF<->CT Sta	ndard R24 R24	Coronal CT Standard S 49	
Ex: 545		Institut Jean Godinot	Ex: 50% 646 / 50% 646 S 50	Institut Jean Godinot	Ex: 646	Institut Jean Godinot
Se:12		F 45 21507897	Se:12/3	F 45 21507697	Se:3	F 45 21507697
P: 1.4		DoB: Dec 08 1989	P: 1.4	DoB: Dec 08 1969	P: 1.8	DoB: Dec 08 1969
DFOV 50.0 x 74.2 cm	100	Ex:Nov 05 2015	DFOV 50.0 x 74.2 cm	Ex:Nov 05 2015	DFOV 50.0 x 74.2 cm 2000	Ex:Nov 05 2015
	2		10.00	0	No Filter	0

Segmentation of Axillary and Supraclavicular Tumoral Lymph Nodes in PET / CT: A Hybrid CNN / Component-Tree Approach

D. L. Farfan Cabrera, N. Gogin, D. Morland, B. Naegel, D. Papathanassiou, N. Passat

Université de Reims Champagne Ardenne, CReSTIC, EA 3804, 51097 Reims, France

General Electric Healthcare, Buc, France

Département de Médecine Nucléaire, Institut Godinot, Reims, France

Université de Strasbourg, CNRS, ICube, Strasbourg, France

Automatic axillary lymph node tumor segmentation in PET/CT

What are lymph nodes?

Patient with no breast cancer

Patient with breast cancer

Automatic axillary lymph node tumor segmentation in PET/CT

What are our contributions?

Automatic axillary lymph node tumor segmentation in PET/CT

What are our contributions?

2nd Contribution:

 Help doctors to identify quicker false positive coming from brown fat

brown fat

PET image

PET image Brown fat shows up (due to exposure to cold)

- Brown fat has the same metabolism as tumor cells
- Brown fat generates **false positives** that can be mistaken by tumors

Automatic lymph node tumor segmentation in PET/CT 2. Component-tree extraction

What is a component-tree?

							_
3	З	3	З	З	3	З	Ĭ
ω	2	2	2	2	2	З	
3	2	1	2	4	2	3	
З	2	2	2	2	2	3	
3	3	3	3	3	3	3	
3	0	0	0	3	3	3	
3	3	3	3	3	3	3	

- Each node is a connected component
- Root node contains all the image
- Follows a hierarchical structure according to gray levels
- Each tree level corresponds to a gray level
- Each node belongs to its ascendants nodes

Automatic lymph node tumor segmentation in PET/CT 2. Component-tree extraction

PET image Coronal MIP view

UNIVERSITÉ DE REIMS CHAMPAGNE-ÀRDENNE

Automatic lymph node tumor segmentation in PET/CT 2. Component-tree extraction

For each node N_i , it is computed:

- f1 \rightarrow G(N_i): mean gradient of node contour in PET
- f2 \rightarrow H(N_i): mean HU value in CT
- f3 \rightarrow S(N_i): standard deviation of H
- f4 \rightarrow R(N_i): relative integral volume
- $f5 \rightarrow L(N_i)$: position with respect to the lungs

Automatic lymph node tumor segmentation in PET/CT 2. Component-tree extraction

Goal of these descriptors?

For each node N_i , it is computed:

- f1 \rightarrow G(N_i): mean gradient of node contour
- f2 \rightarrow H(N_i): mean HU value in CT
- f3 \rightarrow S(N_i): standard deviation of H
- f4 \rightarrow R(N_i): relative integral volume
- $f5 \rightarrow L(N_i)$: position with respect to the lungs

We assign to each **node** 5 descriptors

- Iymph node have high contour gradient
- lymph nodes have positive HU value brown fat has negative HU value
- Iymph nodes have low standard deviation
- Iymph nodes have high contrast with their neighbourhood
- Iymph nodes are ouside the lungs convexhull

Automatic lymph node tumor segmentation in PET/CT 3. Feature map generator

From feature vectors to feature volumes?

Automatic lymph node tumor segmentation in PET/CT 4. CNN and component-tree fusion

UNIVERSITÉ DE REIMS CHAMPAGNE-ARDEN

Training: Validation: Patches for test: Loss Function: Iterations:		201 tumors (42 PET/CT exams) 56 tumors 63 tumors (10 PET/CT exams) 1 - Dice 1000				
Type of ONUMBER	CNN: of layers:	U-NET 3				
Resolutio 3D Patch		1.2mm ³ 80 mm ³				
	U-PET	→ inputs {PET}				
baseline →	U-PET-C	T → inputs {PET, CT}				

U-PET-CT-all \rightarrow inputs {PET, CT, all feature maps}

UNIVERSITÉ DE REIMS CHAMPAGNE-ARDEI

proposed

method

U-PET	\rightarrow inputs {PET}
U-PET-CT	→ inputs {PET, CT}
U-PET-CT-al	$I \rightarrow$ inputs {PET, CT, all feature maps}

14

		Voxel-based metrics (Segmentation)			Region-based metrics (Detection)		
	3D CNN Model	DSC voxel	PPV voxel	SE voxel	DSC region	PPV region	SE region
	3D U-Net (PET)	0.832703	0.827762	0.82478	0.798685	0.757925	0.890805
		+- 0.1327	+- 0.1483	+- 0.0868	+- 0.1547	+- 0.2206	+- 0.0821
baseline	3D U-Net (PET-CT)	0.865896 +- 0.08	0.844429 +- 0.1034	0.886527 +- 0.0465	0.871825 +- 0.1312	0.849864 +- 0.1893	0.926111 +- 0.0628
proposed method	→ 3D U-Net (PET-CT-all)	0.867845 +- 0.1161	0.872781 +- 0.1425	0.896473 +- 0.0553	0.894624 +- 0.1431	0.851361 +- 0.1948	0.933135 +- 0.0756

Proposed method removes false positives coming from brown fat

false positive

Results shown on the PET/CT fusion images

UNIVERSITÉ DE REIMS CHAMPAGNE-ARDEI

false positive U-PET

U-PET-CT (baseline) U-PET-all (proposed method)

Proposed method separates visually connected tumors

U-PET

U-PET-CT (baseline) U-PET-all (proposed method)

Thank you for your attention

mail: diana.lucia.farfan@gmail.com

page: linkedin.com/dianafarfan