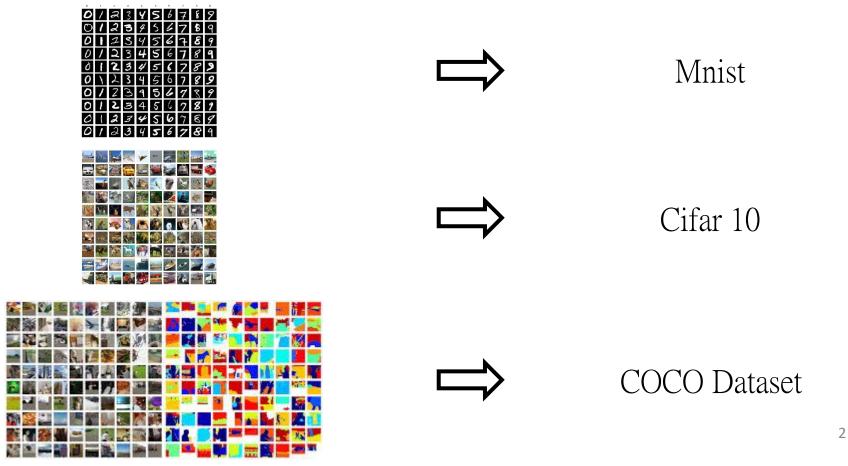
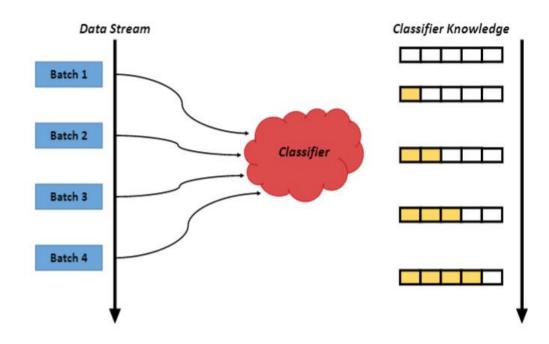


RSAC: Regularized Subspace Approximation Classifier for Lightweight Continuous Learning


Chih-Hsing Ho Advisor : Shang-Ho (Lawrence) Tsai

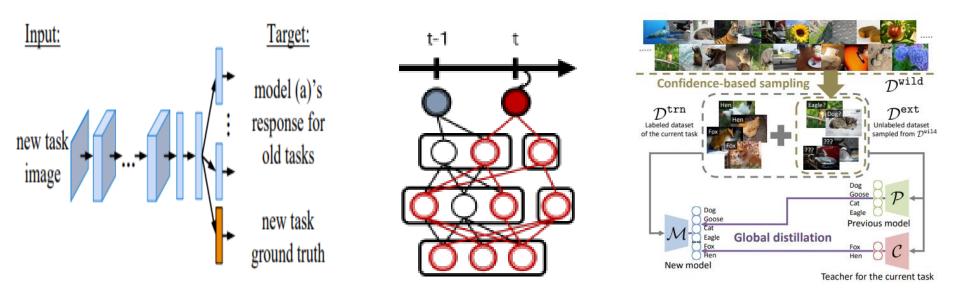
Supervised Learning

- Supervised learning achieves great success
- All tasks are assigned at once
- Entire labeled dataset is provided to deep network



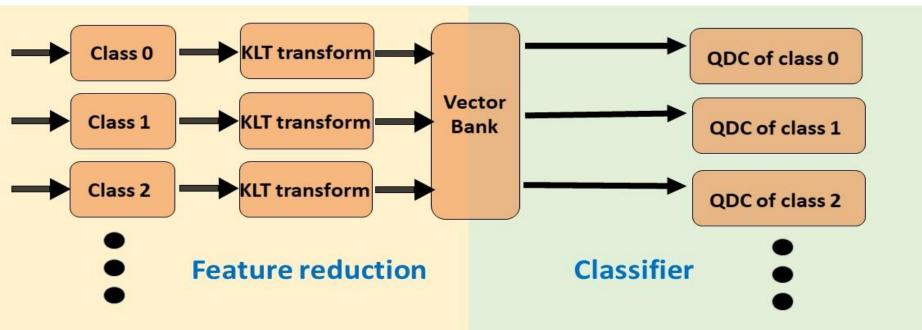
Continuous Learning

- Human grow their knowledge continually
- Deep network imitates human to continually learning
 - Catastrophic forgetting



Continuous Learning

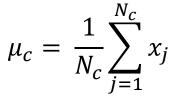
- Several approaches are proposed to resolve catastrophic forgetting
 - 1. Weight consolidation
 - 2. Architecture expansion
 - 3. Memory rehearsal


18 Kibok .et al ICCV 2019

Zhizhong .et al ECCV 2016

Jaehong .et al ICLR 2018

- Modules
 - 1. Feature extraction module
 - 2. Classifier module

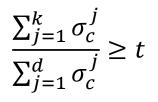


• Notation

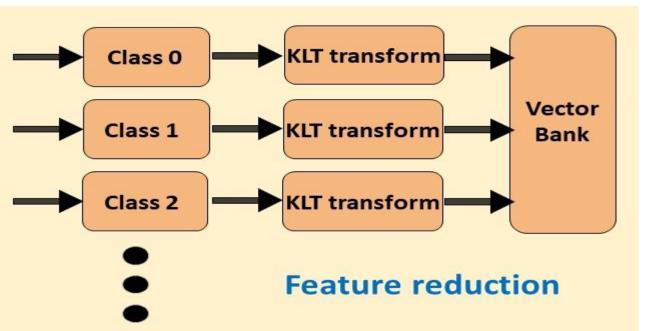
x is the raw image, which the mean μ_c and the covariance matrix Σ_c of class c established on

 N_c is the number of data belongs to class c, Λ_c is a diagonal matrix with the eigenvalue σ_c^j as the j^{th} entry and Q_c is a $d \times d$ orthonormal matrix

$$\Sigma_c = \frac{1}{N_c} \sum_{j=1}^{N_c} (x_j - \mu_c) (x_j - \mu_c)^T$$
$$= Q_c \Lambda_c Q_c^T$$

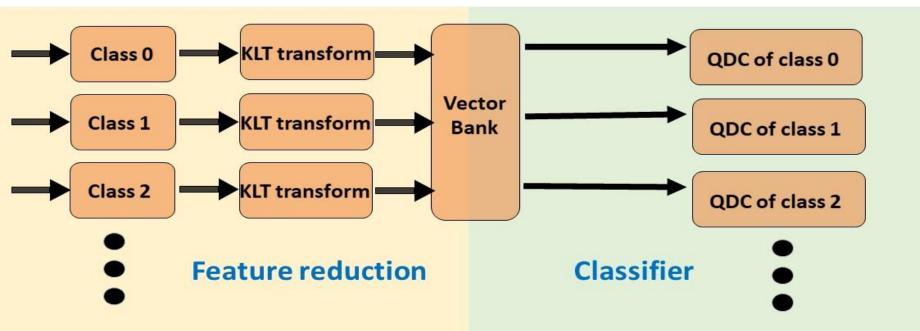


CaSIC LAB RSAC


• Feature reduction

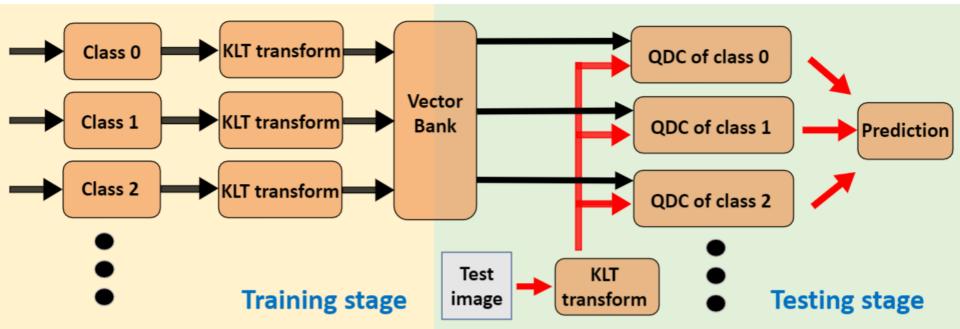
x is the raw image, which the mean μ_c and the covariance matrix Σ_c of class c established on

 N_c is the number of data belongs to class c, Λ_c is a diagonal matrix with the eigenvalue σ_c^j as the j^{th} entry and Q_c is a $d \times d$ orthonormal matrix


 $f(x) = \hat{Q}_c^T x$

• Classifier module

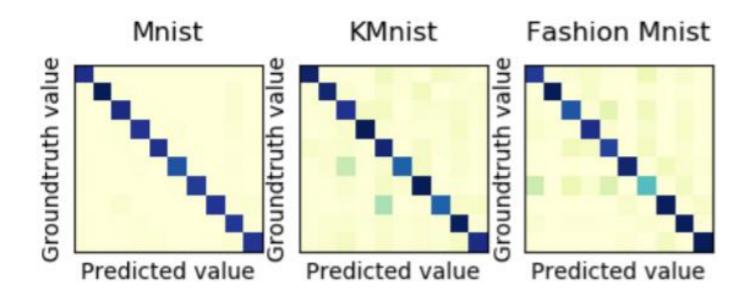
$$\arg\max_{c}\ln\left(\mathsf{P}_{Y|X}(c|f(x))\right)$$
$$=\arg\max_{c}\ln\left(\frac{1}{|\widehat{\Sigma}_{c}|}\right) - \frac{1}{2}(f(x) - \widehat{\mu}_{c})^{T}\widehat{\Sigma}_{c}^{-1}(f(x) - \widehat{\mu}_{c}) + \ln\left(\frac{N_{c}}{\sum_{j=1}^{C}N_{j}}\right)$$



• Regularization

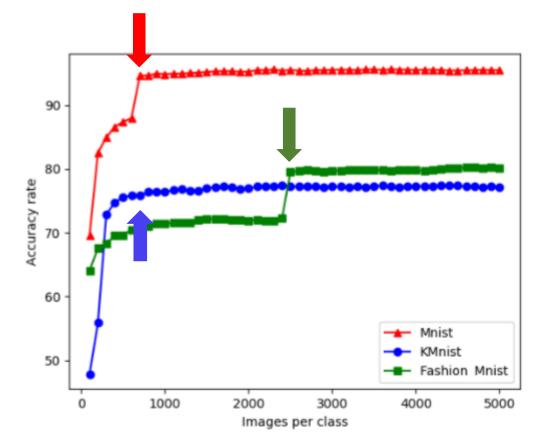
$$\hat{\Sigma}_{c} = Cov(f(x)) = \hat{Q}_{c}^{T}Cov(x)\hat{Q}_{c}$$
$$= \hat{Q}_{c}^{T}\Sigma_{c}\hat{Q}_{c} = \hat{Q}_{c}^{T}Q_{c}\Lambda_{c}Q_{c}^{T}\hat{Q}_{c} = \hat{\Lambda}_{c}$$

$$\widehat{\Sigma}'_c = \widehat{\Sigma}_c + \alpha * I = \widehat{\Lambda}_c + \alpha * I$$


• Class incremental

	I I	Datasets (Accura	acy)	Datasets (Training Time (sec))			
Methods	Mnist	KMnist	Fashion Mnist	Mnist	KMnist	Fashion Mnist	
DGR [28]	90.44±1.56	69.25 ± 2.94	74.83 ± 5.50	315.99±2.25	748.75 ± 51.17	760.21±21.72	
DGR+distill [20], [28]	92.31±0.74	64.42 ± 1.12	76.03 ± 4.12	314.12±12.79	819.52 ± 14.52	800.81±3.69	
EWC [21]	20.45 ± 1.15	19.54 ± 0.12	19.97 ± 0.02	398.86±11.04	719.89 ± 21.95	697.24±53.39	
Online EWC [61]	20.69 ± 1.53	19.54 ± 0.12	19.97 ± 0.03	371.87±12.35	665.04 ± 3.40	692.49 ± 29.20	
iCaRL [13]	93.24±0.70	70.83 ± 2.78	79.61±0.79	200.16±9.83	468.38 ± 4.98	466.60±11.09	
LwF [20]	20.98 ± 0.85	20.16 ± 0.24	19.42 ± 2.54	198.40±9.09	495.62 ± 31.48	499.49±8.77	
RtF [46]	93.75±1.28	66.16 ± 3.06	74.11 ± 4.82	253.37±9.22	639.66 ± 25.56	678.42 ± 34.04	
SI [22]	19.85 ± 0.10	19.53 ± 0.09	19.97 ± 0.02	194.16±87.6	503.72 ± 5.15	498.37±3.28	
CNDPM [62]	93.54±0.13	74.35 ± 1.4	44.62 ± 2.1	> 3600	> 3600	> 3600	
Saak [32]	95.21	76.25	73.51	> 3000	> 3000	> 3000	
Ours	95.59	77.35	80.32	5.90	5.72	5.48	

• Class incremental


- Ablation Study
 - t: power threshold
 - k: the amount of features after reduction

Power threshold t	Mnist		KMnist		Fashion Mnist	
	k	acc	k	acc	$_{k}$	acc
0.8	31	67.75	64	61.30	26	64.90
0.9	68	93.22	126	76.16	77	73.98
0.95	121	95.41	211	77.13	156	79.74
0.96	141	95.43	243	76.87	185	80.25
0.97	168	95.43	285	74.84	224	73.56
0.98	206	91.66	346	75.09	278	73.95
Best	150	95.59	192	77.35	183	80.32

• Ablation Study

Thank you for your listening

https://arxiv.org/abs/2007.01480

RSAC: Regularized Subspace Approximation Classifier for Lightweight Continuous Learning