Hybrid Cascade Point Search Network for High Precision Chart Component Detection

Junyu Luo
Sichuan University
Chengdu, China
asbljy@outlook.com

Jinpeng Wang

Microsoft Research

Beijing, china
jinpwa@microsoft.com

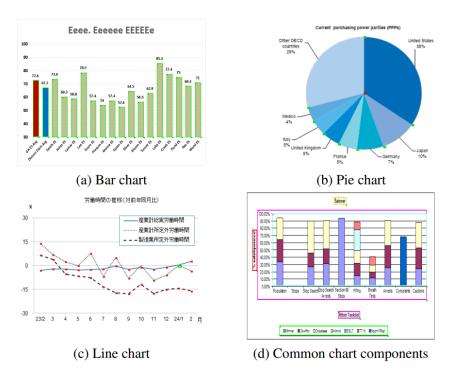
Chin-Yew Lin

Microsoft Passarch

Bei
cyl@i

Background

- Chart images are commonly used for data visualization.
- However, during the process they are generally stored in forms of images, bring problems to the automatic data analysis



Task

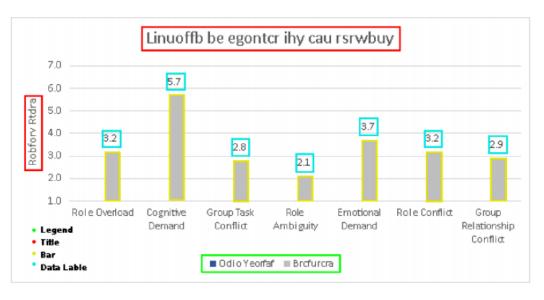


Fig. 4: An example image from ChartDet val set.

• Giving a chart image, we want to mark out each component.

Challenges

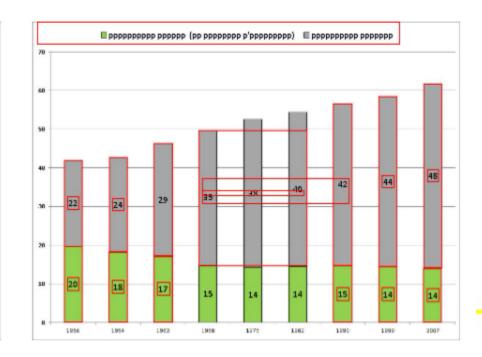
EAOe

Ysluan L Uloecse' colsenbn; ulu darso do Phtwpo Doylo :nri (2010)

• Chart are relatively simple

Yet contains diversity

- Rule-based method is in <u>sufficient</u>
- End2End Methods miss the important middle results for further analysis
- General object detection methods contains accuracy problems
 - Region-based method may get the wrong border (c) CornerNet
 - Key-point-based method may miss group the key points



(d) Cei

Model

- Key Point Proposal
- Dynamically search the object

• Point Pairing Module

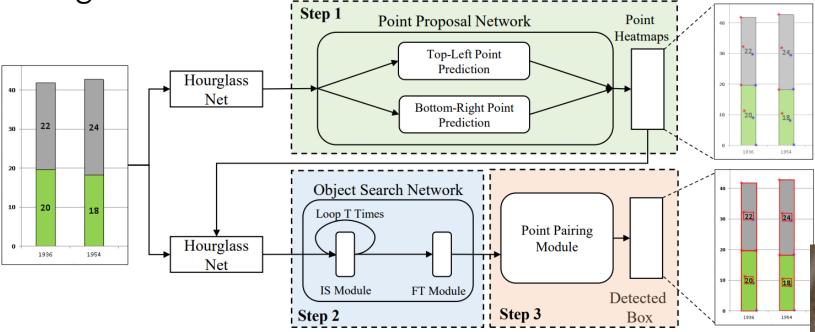
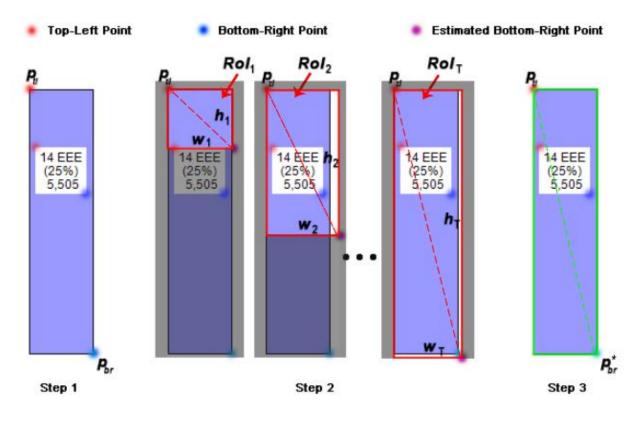


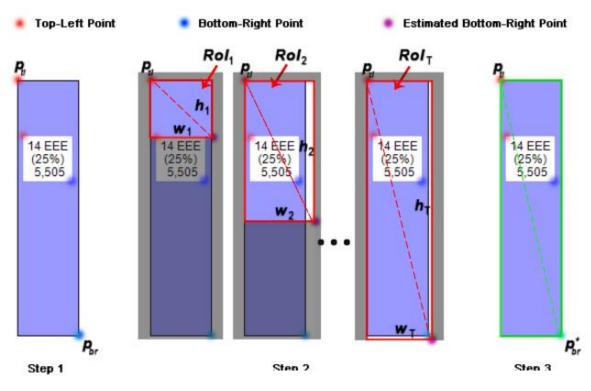
Fig. 3: A diagram of the hybrid cascade pairing network. Point Proposal Network (PPN), Object Search Network (OSN Point Pairing Module (PPM) work in a cascade order.

Key Point Proposal



$$L_{heat} = \frac{-1}{N} \sum_{c=1}^{C} \sum_{i=1}^{H} \sum_{j=1}^{W} \begin{cases} (1 - \hat{y}_{cij})^{\alpha} log(\hat{y}_{cij}), \\ (1 - y_{cij})^{\beta} (\hat{y}_{cij})^{\alpha} log(1 - y_{cij})^{\alpha} log(1 - y_{$$

Dynamically search the object - ISM



Iterative Search Module (ISM): ISM searches the main region of the current object in a few iterations.

$$(f_w, f_h) = \text{ISM}(RoI_t^{\text{ISM}}, p_{tl}.label, Scale_t)$$

$$p_{tl}.w_{t+1} = p_{tl}.w_t \times f_w, \qquad p_{tl}.h_{t+1} = p_{tl}.h_t \times f_h$$

Dynamically search the object - FTM

$$(d_w, d_h) = \text{FTM}(RoI^{\text{FTM}}, p_{tl}.label, Scale_T)$$

$$p_{tl}.w = p_{tl}.w_T \times (1 + d_w)$$

$$p_{tl}.h = p_{tl}.h_T \times (1 + d_h)$$

$$(8)$$

2) Fine Truing Module (FTM): We add the FTM to further refine the predictions using linear di ISM. It is different from ISM.

Point Pairing Module

```
Algorithm 1 Point Pairing Algorithm
Input: top-left point p_{tl}, top-k bottom-right points \{p_{br}\},
    size of predicted region (p_{tl}.w, p_{tl}.h), threshold of IoU
    T_{IoU}, threshold of the score T_{score}, ratio of candidate
    region \gamma
Output: the paired bottom-right point p_{hr}^*
 1: initial the max score S_{max} = 0
 2: p_{obj} = (p_{tl}.i + p_{tl}.w, p_{tl}.j + p_{tl}.h)
 3: \{p_{br}\}' = select p_{br} from \{p_{br}\}
                 where p_{br} in (p_{obj}.i \pm \gamma \cdot p_{tl}.w, p_{tl}.j \pm \gamma \cdot p_{tl}.h)
                    and p_{br}.label == p_{tl}.label
 4: for p_{br} \in \{p_{br}\}' do
     S_{IoU} = \text{IoU}(\text{bbox}(p_{tl}, p_{obj}), \text{bbox}(p_{tl}, p_{br}))
      if S_{IoU} > T_{IoU} then
       S_{cur} = S_{IoU} \times p_{br}.score
          if S_{cur} > S_{max} and S_{cur} > T_{score} then
          S_{max} = S_{cur}
          p_{br}^* = p_{br}
10:
          end if
       end if
13: end for
```



Experiments

Method	AP	$AP_{0.5}$	$AP_{0.75}$	$AP_{0.8}$	$AP_{0.85}$	$AP_{0.9}$	$AP_{0.9}$
Retinanet 101	0.459	0.729	0.497	0.389	0.253	0.110	0.012
Faster-RCNN 101	0.580	0.805	0.664	0.578	0.434	0.233	0.056
Cascade-RCNN 101	0.647	0.831	0.723	0.660	0.552	0.375	0.149
CornerNet	0.646	0.783	0.717	0.674	0.587	0.429	0.225
CenterNet	0.666	0.820	0.742	0.685	0.592	0.429	0.205
HCPN w/o PPM	0.697	0.870	0.775	0.714	0.610	0.429	0.222
HCPN	0.706	0.868	0.778	0.723	0.623	0.457	0.261
HCPN (Bar Only)	0.810	0.934	0.873	0.837	0.757	0.635	
Revision (Bar Only)	0.330	0.598	0.316	0.217	0.112	0.032	

Conclusions

- we presented HCPN, a new framework for precise object detection.
- The experiments proved that our method effectively combining the strengthens of region and point based methods on chart component detection task.

Thanks

