Hybrid Cascade Point Search Network for High Precision Chart Component Detection

Junyu Luo
Sichuan University
Chengdu, China
asbljy@outlook.com

Jinpeng Wang
Microsoft Research
Beijing, china
jinpwa@microsoft.com

Chin-Yew Lin
Microcnftracoawh

Background

- Chart images are commonly used for data visualization.
- However, during the process they are generally stored in forms of images, bring problems to the automatic data analysis

Task

Fig. 4: An example image from ChartDet val set.

- Giving a chart image, we want to mark out each component.

Challenges

EAOe

60\%

- Chart are relatively simplommmommen mmmen
- Yet contains diversity
- Rule-based method is in suffieient
- End2End Methods miss the important middle results for further analysis
- General object detection methods contains accuracy problems
- Region-based method may get the wrong border
(c) CornerNet
- Key-point-based method maxemiss group the key points

Model

- Key Point Proposal
- Dynamically search the object
- Point Pairing Module

Fig. 3: A diagram of the hybrid cascade pairing network. Point Proposal Network (PPN), Object Search Network (OSN Point Pairing Module (PPM) work in a cascade order.

Step 1

Step 2

Step 3

$$
\begin{aligned}
& L_{\text {heat }}= \\
& \qquad \frac{-1}{N} \sum_{c=1}^{C} \sum_{i=1}^{H} \sum_{j=1}^{W}\left\{\begin{array}{l}
\left(1-\hat{y}_{c i j}\right)^{\alpha} \log \left(\hat{y}_{c i j}\right), \\
\left(1-y_{c i j}\right)^{\beta}\left(\hat{y}_{c i j}\right)^{\alpha} \log (1-
\end{array}\right.
\end{aligned}
$$

Dynamically search the object - ISM

Step 1

* Estimated Bottom-Right Point

Iterative Search Module (ISM): ISM searches the main region of the current object in a few iterations.

$$
\begin{gather*}
\left(f_{w}, f_{h}\right)=\operatorname{ISM}\left(\text { RoI }_{t}^{\text {ISM }}, p_{t l} \cdot l a b e l, \text { Scale } e_{t}\right) \tag{3}\\
p_{t l} \cdot w_{t+1}=p_{t l} \cdot w_{t} \times f_{w}, \quad p_{t l} \cdot h_{t+1}=p_{t l} \cdot h_{t} \times f_{h} \tag{4}
\end{gather*}
$$

Dynamically search the object - FTM

$$
\left.\begin{array}{rl}
\left(d_{w}, d_{h}\right) & =\operatorname{FTM}\left(\text { RoI }^{\mathrm{FTM}}, p_{t l} \cdot l \text { abel },\right. \text { Scale }
\end{array}\right)
$$

2) Fine Truing Module (FTM): We add the FTM to further refine the predictions using linear di ISM. It is different from ISM.

Point Pairing Module

```
Algorithm 1 Point Pairing Algorithm
Input: top-left point }\mp@subsup{p}{tl}{}\mathrm{ , top-k bottom-right points {p
    size of predicted region ( }\mp@subsup{p}{tl}{}\cdotw,\mp@subsup{p}{tl}{}\cdoth)\mathrm{ , threshold of IoU
    TIoU}\mathrm{ , threshold of the score }\mp@subsup{T}{\mathrm{ score }}{}\mathrm{ , ratio of candidate
    region }
Output: the paired bottom-right point p}\mp@subsup{p}{b}{*
    1: initial the max score S Sax =0
    2: }\mp@subsup{p}{obj}{}=(\mp@subsup{p}{tl}{}\cdoti+\mp@subsup{p}{tl}{}\cdotw,\mp@subsup{p}{tl}{}\cdotj+\mp@subsup{p}{tl}{}\cdoth
3: {\mp@subsup{p}{br}{}\mp@subsup{}}{}{\prime}=\mathrm{ select }\mp@subsup{p}{br}{}\mathrm{ from {pbr}}}=\mp@code{*}
            where }\mp@subsup{p}{br}{}\mathrm{ in (pobj.i土 
                and pbr.label == potl.label
    4: for }\mp@subsup{p}{br}{}\in{\mp@subsup{p}{br}{}\mp@subsup{}}{}{\prime}\mathrm{ do
    5: }\quad\mp@subsup{S}{IoU}{}=\operatorname{IoU}(\operatorname{bbox}(\mp@subsup{p}{tl}{},\mp@subsup{p}{obj}{}),\operatorname{bbox}(\mp@subsup{p}{tl}{},\mp@subsup{p}{br}{})
    if}\mp@subsup{S}{IoU}{}>\mp@subsup{T}{IoU}{}\mathrm{ then
        Scur}=\mp@subsup{S}{IoU}{}\times\mp@subsup{p}{br}{}.scor
        if S}\mp@subsup{S}{cur}{}>\mp@subsup{S}{\mathrm{ max }}{}\mathrm{ and }\mp@subsup{S}{cur}{}>\mp@subsup{T}{\mathrm{ score }}{}\mathrm{ then
            Smax}=\mp@subsup{S}{cur}{
            pbr}=\mp@subsup{p}{br}{
        end if
    end if
    end for
```


[^0]Bottom-Right Point

* Estimated Bottom-Right Point
$\mathrm{Rol}_{\mathrm{T}}$ P

Experiments

Method	AP	$\mathrm{AP}_{0.5}$	$\mathrm{AP}_{0.75}$	$\mathrm{AP}_{0.8}$	$\mathrm{AP}_{0.85}$	$\mathrm{AP}_{0.9}$	$\mathrm{AP}_{0.95}$
Retinanet 101	0.459	0.729	0.497	0.389	0.253	0.110	0.012
Faster-RCNN 101	0.580	0.805	0.664	0.578	0.434	0.233	0.056
Cascade-RCNN 101	0.647	0.831	0.723	0.660	0.552	0.375	0.149
CornerNet	0.646	0.783	0.717	0.674	0.587	0.429	0.225
CenterNet	0.666	0.820	0.742	0.685	0.592	0.429	0.205
HCPN w/o PPM	0.697	$\mathbf{0 . 8 7 0}$	0.775	0.714	0.610	0.429	0.222
HCPN	$\mathbf{0 . 7 0 6}$	0.868	$\mathbf{0 . 7 7 8}$	$\mathbf{0 . 7 2 3}$	$\mathbf{0 . 6 2 3}$	$\mathbf{0 . 4 5 7}$	$\mathbf{0 . 2 6 1}$
HCPN (Bar Only)	0.810	0.934	0.873	0.837	0.757	0.635	1
Revision (Bar Only)	0.330	0.598	0.316	0.217	0.112	0.032	

Conclusions

- we presented HCPN, a new framework for precise object detection.
- The experiments proved that our method effectively combining the strengthens of region and point based methods on chart component detection task.

Thanks

[^0]: Step 1

