Tackling Contradiction Detection in German Using Machine Translation and End-to-End Recurrent Neural Networks

Maren Pielka, Rafet Sifa, Lars Hillebrand, David Biesner, Rajkumar Ramamurthy, Anna Ladi, and Christian Bauckhage maren.pielka@iais.fraunhofer.de

> Fraunhofer Institute for Intelligent Analysis and Information Systems IAIS

> > December 10, 2020

Agenda

- Introduction to the topic
- Experiments
- Results
- Conclusion and Outlook

Overview

Topic: Exploring methods to detect contradictions in German text \rightarrow Sub-topic of Natural Language Inference (NLI)

Data:

• Stanford Natural Language Inference (SNLI) data set, partially translated to German by a machine translation engine \rightarrow 120 000 labeled sentence pairs

Applications:

- Fact Checking
- Financial Consistency Checks
- Question Answering
- ...

Overview (cont.)

Main task: Finding semantic correlations between two sentences → premise and hypothesis

	Premise	Hypothesis	Label
1	"A person on a horse jumps over a broken down airplane."	"A person is outdoors, on a horse."	"entailment"
2	"A person on a horse jumps over a broken down airplane."	"A person is training his horse for a competition."	"neutral"
3	"A person on a horse jumps over a broken down airplane."	"A person is at a diner, ordering an omelette."	"contradiction"

Table: Example sentence pairs with labels from the SNLI data set

Objectives

Our contribution:

- First benchmarks in an unexplored area
 - → Most previous work has been done on English text, and for the three-way task (entailment vs. neutral vs. contradiction)
- Applying state-of-the art methods to machine-translated data

Learning Sentence Embeddings

Model 1: Concatenate embeddings from premise and hypothesis using RNN encoders, and apply an MLP classifier

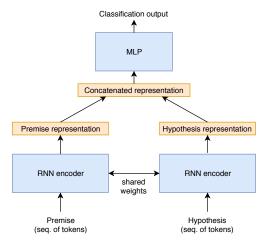


Figure: RNN model without attention

Learning Sentence Embeddings (cont.)

Model 2: Apply two RNN encoders with an attention mechanism, obtain embeddings from second RNN and apply an MLP classifier

Figure: RNN model with attention

Evaluation

	Original data	Translated data
TF-IDF	0.7602	0.7422
Flair (pre-trained, mean-pooled)	0.7703	0.7807
RNN (without attention)	0.7734	0.7847
RNN (with attention)	0.7555	0.7807
MBERT	0.8508	0.7457

Table: Performance comparison (accuracy) for the different classification methods, evaluated on the original and the translated SNLI test set, respectively.

Results: Attention vs. no attention

	Original sentence pair	Translated sentence pair	Model 1 prediction	Model 2 prediction	True label
1	P: "Here is a picture of people getting drunk at a house party." H: "People were celebrating at a Christmas themed party."	P: "Hier ist ein Bild von Leuten, die sich auf einer Hausparty betrinken." H: "Die Leute feierten auf einer Weih- nachtsparty."	No contradiction	Contradiction	No contradiction
2	P: "A black man in a white uniform makes a spectacular reverse slam dunk to the crowd's amazement." H: "the man is Asian"	P: "Ein schwarzer Mann in weißer Uniform macht einen spektakulären Reverse-Slam Dunk zum Staunen der Menge." H: "der Mann ist Asiate"	No contradiction	No contradiction	Contradiction

Table: Prediction examples for the model without (model 1) and with (model 2) attention, in comparison.

Conclusion

Important findings

- RNN-based models outperform simple methods on both the original and the translated data set.
- Overall, the performances on the original and the translated data set are similar (except for MBERT), verifying the high quality of the translation.

Future work

- Incorporate world knowledge to the model (e.g. by exploiting knowledge graphs)
- Apply models to real-world data

Thank you for your attention! Any questions?

References

- S. Bowman et al. "A Large Annotated Corpus for Learning Natural Language Inference". *Proc. of EMNLP 2015*. EMNLP. 2015.
- A. Conneau et al. "Supervised Learning of Universal Sentence Representations from Natural Language Inference Data". Proc. of EMNLP 2017. EMNLP. 2017.
- Guillaume Lample and Alexis Conneau. "Cross-lingual Language Model Pretraining". Advances in Neural Information Processing Systems (NeurIPS) (2019).
- T. Rocktäschel et al. "Reasoning About Entailment with Neural Attention". *Proc. of ICLR 2016*. ICLR. 2016.
- Rafet Sifa et al. "Towards Contradiction Detection in German: A Translation-driven Approach". *Proc. of IEEE SSCI* 2019. 2019.